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1.	   Introduction:	  
The	  nation’s	  energy	  security	  is	  largely	  dependent	  on	  the	  acquisition	  of	  baseload	  
power,	  with	  minimal	  environmental	  impact	  and	  cost.	  This	  issue	  constitutes	  one	  
of	  the	  outstanding	  problems	  of	  the	  millennium.	  The	  solid	  Earth	  provides	  two	  
primary	  energy	  sources	  –	  fossil	  fuels	  and	  geothermal	  energy.	  In	  both	  cases,	  
“conventional”	  resources	  are	  those	  that	  can	  be	  economically	  harvested	  with	  
existing	  technology.	  Relatively	  rapid	  fluid	  flow	  through	  porous,	  high	  permeability	  
rocks	  makes	  this	  possible.	  Conventional	  oil	  recovery	  and	  hydrothermal	  energy	  
are	  prime	  examples.	  Unconventional	  resources	  are	  those	  too	  costly	  to	  extract	  
with	  current	  methods	  and	  include	  natural	  gas	  and	  oil	  contained	  in	  shales	  (shale-‐
gas	  and	  shale-‐oil)	  and	  thermal	  energy	  contained	  deeper	  in	  the	  earth’s	  crust	  (>3	  
km,	  these	  are	  referred	  to	  as	  Enhanced	  Geothermal	  Systems	  (EGS)).	  Both	  are	  
rendered	  unconventional	  due	  to	  low	  reservoir	  permeability	  that	  prevents	  gases	  
from	  flowing	  and	  geothermal	  “working	  fluids”	  from	  circulating	  and	  extracting	  
heat.	  The	  key	  to	  efficient	  extraction	  of	  energy	  from	  these	  resources	  is	  the	  
engineered	  enhancement	  of	  fracture	  permeability,	  the	  creation	  of	  optimal	  
fracture	  networks. 

The	  process	  of	  enhancing	  the	  fracture	  permeability	  of	  reservoir,	  known	  as	  
“fracking”,	  involves	  hydraulic	  “stimulation”	  to	  produce	  new	  fractures	  or	  
reactivate	  existing	  fracture	  systems.	  The	  behavior	  of	  fracture	  networks	  is	  
complex,	  exhibiting	  dependence	  on	  in	  situ	  heterogeneities,	  mineralogy	  and	  
constitutive	  properties	  of	  the	  native	  rock,	  and	  on	  loading	  conditions,	  and	  
influenced	  by	  the	  in	  situ	  stress	  field	  and	  the	  dynamically	  varying	  local	  stresses	  
near	  both	  created	  and	  in	  situ	  heterogeneities.	  Further	  complications	  arise	  due	  to	  
uncertainties—aleatoric	  and	  epistemic—resulting	  from	  not	  only	  inadequate	  
characterization	  of	  the	  geologic	  environment	  but	  also	  from	  a	  lack	  of	  
understanding	  of	  important	  physical	  processes	  that	  influence	  fracture	  initiation	  
and	  propagation.	  Empirical	  engineering	  of	  fracture	  networks	  is	  expensive	  and	  in	  
the	  case	  of	  EGS,	  has	  not	  resulted	  in	  a	  useable	  domestic	  energy	  supply	  in	  spite	  of	  
its	  transformative	  volume	  and	  broad	  geographic	  distribution. 

The	  primary	  goal	  of	  this	  project	  is	  the	  development	  of	  a	  multi-‐physics,	  multi-‐scale	  
simulation	  capability	  to	  predict	  the	  initiation,	  propagation	  and	  maintenance	  of	  
hydraulically	  driven	  fracture	  networks	  in	  heterogeneous	  geologic	  materials.	  The	  
development	  and	  validation	  of	  integrated	  code	  capability,	  GEOS,	  that	  accurately	  
captures	  the	  phenomenology	  of	  these	  complex	  physical	  processes	  across	  a	  wide	  
range	  of	  time-‐	  (~10-‐6	  to	  ~108	  s)	  and	  length-‐	  (~10-‐3	  to	  ~104	  m)	  scales	  is	  the	  main	  
scientific	  objective	  of	  the	  proposed	  initiative.	  GEOS	  constitutes	  a	  new	  analytical	  
framework	  incorporating	  the	  underlying	  physics	  that	  drives	  fracture	  development	  
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–	  e.g.	  dynamically	  changing	  fracture	  network	  topologies,	  fluid/solid	  interactions	  
taking	  place	  along	  discrete	  interfaces,	  and	  complex	  matrix/fracture	  transport	  
processes.	  Enhanced	  seismic	  observational	  tools	  and	  inversion	  methods	  will	  also	  
be	  developed.	   

This	  initiative	  has	  positioned	  LLNL	  to	  play	  a	  leading	  role	  in	  the	  development	  of	  
Enhanced	  Geothermal	  Systems,	  unconventional	  gas	  energy	  resources,	  risk	  
assessment	  associated	  with	  geologic	  sequestration	  of	  CO2	  and	  the	  detection	  of	  
radioactive	  gases	  from	  clandestine	  nuclear	  tests,	  impacting	  both	  energy	  and	  
national	  security. 

2.	  GEOS	  Description:	  
GEOS	  is	  a	  massively	  parallel,	  multi-‐physics	  simulation	  application	  utilizing	  high	  
performance	  computing	  (HPC)	  and	  designed	  to	  address	  subsurface	  reservoir	  stimulation	  
activities	  for	  the	  purpose	  of	  optimizing	  current	  operations	  and	  evaluating	  innovative	  
stimulation	  methods..	  	  GEOS	  enables	  coupling	  of	  different	  solvers	  associated	  with	  the	  
various	  physical	  processes	  occurring	  during	  reservoir	  stimulation	  in	  unique	  and	  
sophisticated	  ways,	  adapted	  to	  various	  geologic	  settings,	  materials	  and	  stimulation	  
methods,	  and	  provides	  a	  platform	  for	  integrating	  various	  geophysical	  and	  operational	  
observations	  during	  reservoir	  stimulation.	  Developed	  under	  the	  auspices	  of	  Lawrence	  
Livermore	  National	  Laboratory’s	  (LLNL)	  	  Laboratory-‐Directed	  Research	  and	  Development	  
(LDRD)	  program	  as	  a	  Strategic	  Initiative	  (SI),	  GEOS	  represents	  the	  culmination	  of	  a	  three-‐
year	  code	  development	  and	  improvement	  plan	  that	  has	  leveraged	  existing	  code	  
capabilities	  and	  staff	  expertise	  to	  design	  new	  computational	  geosciences	  software.	  
	  
The	  overall	  architecture	  of	  the	  GEOS	  framework	  includes	  consistent	  data	  structures,	  
generalized	  parallel	  communication	  and	  input/output	  functions,	  and	  interfaces	  for	  
incorporating	  additional	  physics	  solvers	  and	  materials	  models	  as	  demanded	  by	  future	  
applications.	  	  Along	  with	  predicting	  the	  initiation,	  propagation	  and	  reactivation	  of	  
fractures	  (Figure	  1),	  GEOS	  also	  generates	  synthetic	  microseismic	  source	  terms	  that	  can	  
be	  used	  to	  generate	  motions	  at	  surface	  and	  downhole	  array	  positions	  (Figure	  2).	  GEOS	  
can	  also	  be	  linked	  with	  existing,	  non-‐intrusive	  uncertainty	  quantification	  schemes,	  such	  
as	  PSUADE,	  to	  constrain	  uncertainty	  in	  its	  predictions	  and	  sensitivity	  to	  the	  various	  
parameters	  describing	  the	  reservoir	  and	  stimulation	  operations.	  
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Figure	  1:	  Illustration	  of	  nine	  simultaneously	  pumped	  hydraulically	  driven	  fractures,	  showing	  how	  small	  change	  in	  the	  	  
fluid	  boundary	  conditions	  can	  lead	  to	  race	  conditions.	  The	  color	  bar	  indicates	  stress	  (blue	  is	  compressive)	  
perpendicular	  to	  the	  fractures.	  

	  
Figure	  2:	  Illustration	  of	  two	  simulataneously	  pumped	  fractures	  under	  a	  slight	  pressure	  gradient.	  The	  fractures	  curve	  
away	  from	  each	  other	  in	  three	  dimensions	  with	  the	  higher	  pressure	  fracture	  deflecting	  less	  than	  the	  other.	  The	  red	  
dots	  indicate	  pre-‐existing	  joints	  in	  the	  simulation	  where	  microseismicity	  is	  predicted.	  
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GEOS	  development	  was	  originally	  motivated	  by	  the	  need	  to	  simulate	  hydraulic	  fracture	  
stimulation;	  however,	  the	  capabilities	  are	  being	  expanded	  beyond	  this	  to	  include	  
simulation	  of	  long-‐term	  fault	  behavior	  associated	  with	  injection-‐induced/triggered	  
seismicity	  (Figure	  3),	  modeling	  the	  behavior	  of	  discontinuous	  rock	  masses	  under	  load,	  
particle	  method	  simulation	  of	  granular	  mechanics,	  flow	  and	  transport	  of	  heat	  and	  fluid	  
in	  dual	  permeability	  (discontinuous/continuous)	  geologies,	  and	  numerical	  (finite	  
difference	  based)	  propagation	  of	  seismic	  waves.	  GEOS	  can	  additionally	  call	  LLNL-‐
proprietary	  material	  models	  and	  equations	  of	  state.	  
	  
Despite	  the	  expansion	  of	  its	  application	  space,	  the	  GEOS	  framework	  development	  is	  

Figure	  3:	  Pore	  pressure	  perturbation	  along	  pre-‐existing	  faults	  (upper)	  and	  the	  within	  slices	  through	  the	  
reservoir	  (lower)	  for	  a	  simulation	  (GEOS	  coupled	  with	  PNNL's	  STOMP	  reservoir	  simulator)	  of	  seismicity	  
induced	  by	  CO2	  injection	  in	  a	  seismically	  active	  region.	  Fault	  slip	  is	  explicitly	  tracked	  using	  a	  Displacement	  
Discontinuity	  Method	  (DDM)	  to	  resolve	  the	  mechanics	  and	  a	  rate-‐and-‐state	  based	  formulation	  to	  inform	  the	  
failure	  criterion	  in	  the	  same	  way	  as	  RSQSim	  (Richards-‐Dinger	  and	  Dieterich,	  UC-‐Riverside)	  



	   7	  

primarily	  focused	  on	  the	  solution	  of	  low-‐rate	  loading	  of	  coupled	  hydro-‐mechanical	  
systems	  with	  the	  target	  application	  of	  better	  characterizing	  reservoir	  response	  to	  
different	  stimulation,	  fracture	  control,	  and	  injection/disposal	  techniques	  over	  both	  
stimulation	  and	  production	  timescales.	  

3.	  Mission	  and	  Strategy:	  
Due	  to	  the	  vast	  range	  of	  relevant	  time	  and	  spatial	  domains,	  coupled	  with	  uncertain	  
boundary	  conditions,	  the	  development	  of	  numerical	  simulation	  tools	  to	  address	  
problems	  in	  the	  geological	  sciences	  and	  geologic	  engineering	  applications	  represents	  a	  
continuing	  challenge.	  	  It	  has	  been	  difficult	  to	  develop	  effective	  numerical	  tools	  that	  
incorporate	  accurate	  models	  of	  the	  relevant	  physical	  mechanisms	  and	  the	  requisite	  
spatial	  and	  temporal	  scaling,	  while	  maintaining	  computational	  economy.	  Instead,	  many	  
tools	  have	  been	  developed	  utilizing	  field-‐based	  experience	  and/or	  empirical	  
relationships,	  and	  can	  work	  extraordinarily	  well	  when	  the	  operation	  is	  mature	  and	  a	  
significant	  operational	  database	  exists.	  These	  methods,	  however,	  work	  less	  well	  when	  
one	  needs	  to	  predict	  the	  outcome	  of	  a	  new	  operational	  method	  or	  work	  in	  a	  reservoir	  
that	  has	  geologic	  characteristics	  different	  from	  those	  that	  are	  familiar.	  Such	  
complexities	  are	  encountered	  in	  unconventional	  gas	  and	  oil	  production,	  development	  of	  
enhanced	  geothermal	  systems	  and	  in	  geologic	  carbon	  sequestration	  –	  each	  an	  
important	  energy	  security	  and	  environmental	  concern.	  	  However,	  it	  is	  these	  new	  
operational	  methods	  and	  unfamiliar	  geologies	  that	  hold	  the	  greatest	  prospect	  for	  
unlocking	  new	  energy	  resources	  and	  increasing	  the	  efficiency	  of	  resources	  extraction.	  
	  
Currently,	  the	  oil	  and	  gas	  industry	  has	  been	  able	  to	  address	  hydraulic	  stimulation	  
operations	  from	  a	  largely	  empirical	  standpoint,	  without	  resorting	  to	  sophisticated	  
computational	  tools.	  The	  advent	  of	  slick-‐water	  hydraulic	  fracture	  stimulation	  coupled	  
with	  horizontal	  drilling	  and	  staged	  fracturing,	  the	  technologies	  that	  have	  spurred	  the	  
current	  boom	  in	  tight	  gas	  drilling,	  is	  an	  example	  of	  such	  an	  advance.	  This	  is	  characteristic	  
of	  many	  advances,	  where	  trial-‐and-‐error	  over	  many	  projects	  by	  many	  operators	  
eventually	  results	  in	  a	  technique	  that	  works.	  However,	  over	  20	  years	  elapsed	  between	  
the	  initial	  federal	  R&D	  investment	  in	  shale-‐gas	  extraction	  and	  the	  first	  economical	  shale-‐
gas	  fracture.	  Similarly,	  this	  empirical	  approach	  can	  be	  inefficient	  in	  terms	  of	  resource	  
allocation	  (the	  cost	  of	  drilling	  a	  single	  well	  can	  be	  ~$1M)	  and	  may	  also	  have	  significant	  
environmental	  risks.	  	  As	  the	  implementation	  of	  hydraulic	  stimulation	  expands	  to	  
encompass	  different	  lithologies	  (e.g.,	  the	  Monterey	  Formation)	  and	  stress	  regimes,	  this	  
empirical	  approach	  may	  no	  longer	  be	  relevant.	  The	  primary	  issue	  addressed	  by	  the	  
GEOS	  Initiative	  is	  whether	  or	  not	  HPC-‐based	  simulation	  of	  extraction	  methods	  can	  be	  
applied	  to	  a	  variety	  of	  geologic	  models	  and	  be	  used	  to	  optimize	  existing	  extraction	  
operations	  and	  to	  evaluate	  the	  efficacy	  of	  innovative	  methodologies.	  
	  
Given	  the	  ever-‐increasing	  need	  for	  energy	  with	  minimal	  environmental	  impact,	  the	  
prospects	  of	  HPC-‐based	  simulation	  tools	  in	  optimizing	  operations	  during	  both	  planning	  
and	  execution	  is	  tantalizing,	  with	  potentially	  drastic	  decreases	  in	  cost,	  faster	  
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turnaround,	  greater	  control	  of	  the	  analysis,	  and	  more	  complete	  utilization	  of	  
operational	  data.	  However,	  this	  potential	  is	  only	  realized	  if	  the	  simulations	  can	  
demonstrably	  accelerate	  the	  deployment	  of	  new	  methodologies	  and	  predict	  system	  
responses	  within	  reliable	  error	  bounds.	  This	  would	  not	  only	  improve	  operations	  and	  
efficiency	  but	  also	  decrease	  project	  failure	  risk,	  which	  has	  far-‐reaching	  implications	  from	  
insurance	  valuation	  to	  government	  regulation.	  Everyone	  benefits	  when	  risk	  can	  be	  
reliably	  assessed	  and	  reduced.	  
	  
The	  major	  hurdle	  in	  developing	  such	  numerical	  simulation	  tools	  lies	  in	  the	  complex	  
physical	  processes	  at	  work	  in	  the	  reservoir,	  along	  with	  the	  uncertain	  nature	  of	  reservoir	  
characteristics.	  Processes	  associated	  with	  stimulation	  vary	  drastically	  in	  time	  and	  spatial	  
extent,	  and	  the	  dominant	  physical	  processes	  at	  any	  location	  within	  a	  reservoir	  may	  also	  
vary	  as	  stimulation	  proceeds.	  For	  instance,	  while	  the	  timescale	  for	  long-‐term	  production	  
is	  on	  the	  order	  of	  decades,	  a	  stimulation	  operation	  may	  take	  less	  than	  a	  day,	  and	  
individual	  fractures	  may	  propagate	  via	  processes	  at	  the	  microsecond	  timescale	  if	  viewed	  
at	  the	  smallest	  spatial	  scales.	  The	  spatial	  domain	  also	  varies	  drastically:	  	  Reservoirs	  may	  
be	  on	  the	  order	  of	  less	  than	  one	  to	  several	  miles,	  while	  a	  particular	  stimulation	  may	  only	  
affect	  an	  area	  of	  several	  tens	  of	  feet	  from	  the	  action	  point.	  The	  choice	  of	  stimulation	  
method	  may	  additionally	  influence	  the	  time	  and	  spatial	  domains	  of	  resulting	  physical	  
phenomena	  that	  must	  be	  considered.	  	  	  
	  
GEOS	  is	  a	  framework	  that	  allows	  an	  analyst	  to	  couple	  different	  solvers,	  adapting	  to	  
various	  geologic	  settings,	  materials	  and	  stimulation	  methods.	  Currently,	  GEOS	  
development	  is	  focused	  on	  capturing	  the	  dominant	  processes	  during	  stimulation	  of	  
fracture	  networks	  in	  the	  subsurface.	  This	  problem	  is	  uniquely	  addressable	  with	  GEOS,	  
which	  can	  run	  massively	  parallelized	  solvers	  (sequentially/concurrently)	  with	  different	  
coupling	  interfaces.	  The	  envisioned	  end	  use	  case	  would	  involve	  using	  an	  implicit	  solver	  
for	  the	  majority	  of	  the	  simulation	  at	  a	  coarse	  scale,	  allowing	  for	  fast	  computation	  of	  the	  
evolution	  of	  the	  reservoir.	  	  When	  a	  fracturing	  event	  is	  imminent,	  the	  solver	  is	  
transitioned	  to	  a	  more	  appropriate	  explicit	  solver	  that	  captures	  the	  time	  evolution	  of	  
the	  event	  then	  synchronizes	  with	  the	  implicit	  solver	  to	  continue	  its	  simulation.	  
	  
Coupling	  between	  physics	  models	  occurs	  in	  a	  similar	  manner.	  For	  most	  of	  the	  time	  the	  
hydraulic	  behavior	  of	  rock	  with	  pre-‐existing	  joints	  and	  fractures	  is	  governed	  by	  slow,	  
convective,	  laminar	  flow	  through	  narrow	  through-‐going	  channels	  and	  by	  even	  slower	  
diffusive	  and/or	  Darcy	  flow	  in	  the	  porous	  rock.	  However,	  during	  stimulation	  these	  time	  
constants	  can	  be	  drastically	  reduced	  and	  non-‐laminar	  effects	  can	  dominate	  in	  the	  
fractures	  where	  fracture	  propagation	  is	  occurring.	  GEOS	  allows	  coupling	  of	  fracture	  
evolution	  with	  a	  seismic	  response	  model	  to	  determine	  the	  source	  mechanism	  associated	  
with	  each	  event.	  	  This,	  in	  turn,	  can	  be	  coupled	  with	  other	  wave	  propagation	  codes	  (and	  
will	  be	  addressed	  by	  a	  finite	  difference	  code	  currently	  under	  development	  directly	  in	  
GEOS)	  to	  predict	  the	  synthetic	  micro-‐seismicity	  at	  a	  particular	  site.	  	  Similarly,	  a	  
simulated	  anisotropic	  permeability	  tensor	  can	  be	  handed	  off	  to	  fluid	  and	  thermal	  
transport	  codes	  (and	  will	  be	  addressed	  by	  a	  dual-‐permeability	  finite	  element	  code	  
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currently	  under	  development	  directly	  in	  GEOS).	  	  In	  the	  end,	  this	  scheme	  will	  provide	  a	  
clear	  and	  consistent	  upscaling	  method	  to	  take	  the	  mechanisms	  that	  are	  observed	  at	  
finer	  scales	  and	  homogenize	  them	  to	  larger	  scales	  for	  specific	  sites,	  providing	  the	  
additional	  ability	  to	  capture	  uncertainty	  in	  the	  calculations	  as	  well	  as	  providing	  the	  basis	  
for	  comprehensive	  risk	  analysis.	  

4.	  GEOS	  Development	  History	  
The	  GEOS	  Initiative	  is	  a	  3-‐year	  project	  funded	  by	  LLNL’s	  Laboratory	  Directed	  Research	  
and	  Development	  program	  (LDRD)	  beginning	  in	  July	  2011.	  	  Here	  we	  describe	  the	  
essential	  elements	  of	  the	  GEOS	  code	  and	  their	  implementation.	  
	  

	  
Figure	  4:	  Illustration	  of	  a	  single,	  penny-‐shaped	  (radial)	  fracture	  propagating.	  The	  tip	  stress	  at	  the	  leading	  edge	  of	  the	  
fracture	  is	  indicated	  as	  a	  darker	  gray	  ring	  with	  the	  (light	  red)	  tensile	  stress	  while	  the	  fluid	  lags	  the	  fracture	  front.	  
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Figure	  5:	  Illustration	  of	  simultaneously	  pumped	  hydraulic	  fractures	  in	  a	  randomly	  perturbed	  matrix	  and	  under	  
differential	  stress.	  Microseismic	  source	  tensors	  induced	  by	  the	  changing	  stress	  field	  near	  the	  hydraulic	  fractures	  are	  
rendered	  as	  oriented,	  scaled	  ellipsoids	  and	  colored	  by	  event	  magnitude.	  Note	  that	  the	  seismicity	  associated	  with	  the	  
primary	  hydraulic	  fracture	  has	  been	  suppressed	  to	  highlight	  events	  in	  the	  matrix	  related	  to	  perturbations	  in	  local	  
stresses	  that	  are	  unrelated	  to	  the	  fluid	  front.	  

	  
Figure	  6:	  Illustration	  of	  a	  simulaneously	  fractured	  stage	  in	  the	  presence	  of	  inhomogeneities.	  The	  pre-‐existing	  fracture	  
network	  for	  calculating	  the	  failure	  state	  is	  shown	  as	  gray	  rectangles,	  and	  calculated	  microseisms	  are	  shown	  in	  the	  left,	  
upper	  quadrant.	  
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3.1	   The	  GEOS	  framework	  	  
GEOS	  currently	  supports	  two-‐	  and	  three-‐dimensional	  coupled	  finite	  difference	  (FD)	  and	  
finite	  element	  (FE)	  based	  simulation:	  
	  

• First-‐order	  accurate	  elements	  for	  FE	  solid	  mechanics	  
o 2D:	  triangular	  and	  quadrilateral	  elements	  
o 3D:	  tetrahedral	  and	  hexahedral	  elements	  

• Dimensionally	  reduced,	  first-‐order	  accurate	  elements	  for	  FD	  parallel	  plate	  
idealized	  fluid	  dynamics	  

o 1D:	  line	  elements	  
o 2D:	  triangular	  and	  quadrilateral	  elements	  

• Proppant	  models	  include	  several	  different	  fluid	  rheologies:	  
o Non-‐Newtonian	  
o Proppant	  entrained	  
o Multi-‐component	  settling	  and	  transport	  

• Fracture	  mechanics	  is	  addressed	  at	  multiple	  scales:	  
o Fine	  scale:	  typical	  cohesive	  element	  approach	  
o Coarse-‐scale:	  displacement-‐based	  approach	  to	  calculated	  the	  stress	  

intensity	  factor	  at	  the	  fracture	  tip	  
• When	  the	  fracture	  criterion	  has	  been	  met,	  new	  surface	  area	  is	  created:	  

o Solid	  mesh	  topology	  is	  changed	  through	  the	  separation	  of	  faces	  
o Fluid	  mesh	  topology	  is	  changed	  through	  the	  spawning	  of	  new,	  fluid	  mesh	  

elements	  that	  conform	  to	  the	  faces	  of	  the	  newly	  created	  surface	  area	  
o Connectivity	  between	  the	  solid	  and	  fluid	  elements	  is	  established	  and	  

coupling	  achieved	  through	  the	  pressure	  term	  in	  the	  fluid	  and	  the	  
displacement	  term	  in	  the	  solid.	  

• If	  fracture	  surfaces	  come	  back	  into	  contact,	  this	  condition	  is	  automatically	  
detected:	  

o Several	  contact	  detection	  algorithms	  implemented,	  including	  algorithms	  
that	  scale	  linearly	  in	  computational	  time	  with	  the	  number	  of	  interfaces	  
(i.e.,	  O(N)	  complexity	  algorithms)	  

o Large-‐displacement	  of	  surfaces	  is	  handled	  through	  an	  advection-‐free	  
algorithm	  

o Arbitrary	  interfacial	  constitutive	  models	  can	  inform	  the	  permeability-‐
displacement	  and	  traction-‐displacement	  relations	  

§ For	  example:	  Barton-‐Bandis-‐Bakhtar	  type	  models	  are	  
implemented	  

• In-‐situ	  fractures	  and	  non-‐linear,	  anisotropic	  behavior	  can	  be	  included	  in	  the	  
mechanical	  and	  seismic	  response:	  

o Anisotropic	  damage	  models	  are	  currently	  available	  with	  LLNL	  proprietary	  
material	  libraries	  

o A	  new	  anisotropic	  elasticity	  and	  anisotropic	  plasticity	  model	  aimed	  at	  
shale	  behavior	  is	  currently	  being	  implemented	  
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o Micro-‐seismic	  failure	  models,	  which	  provide	  full	  tensor	  source	  terms,	  are	  
supported	  in	  the	  code	  

§ Support	  user	  input	  or	  geostatistically	  populated	  fractures	  and	  
fracture	  properties	  (e.g.,	  cohesion,	  rate-‐and-‐state	  friction	  
parameters,	  etc.)	  

§ In-‐situ	  fracture	  state	  is	  uni-‐directionally	  coupled	  with	  the	  in-‐situ	  
stress	  state	  in	  the	  FE	  solid	  elements	  

§ Two-‐way	  coupling	  such	  that	  the	  fractures	  inform	  the	  material	  
properties	  of	  the	  solid	  is	  under	  development	  concurrent	  with	  the	  
development	  of	  the	  anisotropic	  elasto-‐plastic	  constitutive	  model.	  

	  

3.2	   	  GEOS	  Model	  Enhancements	  	  
While	  the	  essential	  elements	  of	  the	  GEOS	  are	  substantially	  complete,	  we	  continue	  to	  
optimize	  code	  performance	  and	  computational	  efficiency,	  while	  also	  incorporating	  
additional	  physical	  models.	  	  Many	  of	  these	  improvements	  are	  the	  result	  of	  interactions	  
with	  external	  sponsors	  who	  are	  working	  with	  LLNL	  on	  GEOS	  applications	  to	  various	  
hydrocarbon	  extraction	  issues.	  	  The	  following	  elements	  are	  currently	  in	  being	  
implemented:	  
	  

• Finite	  element	  based	  hydrothermal	  flow	  and	  transport	  solver	  development	  
o Completed	  initial	  implementation	  

§ Scalable	  
§ Massively	  parallel	  

o Discontinuous	  Galerkin	  (DG)	  version	  under	  development	  to	  handle	  
strong	  pressure	  gradients	  near	  the	  interface	  for	  fractured,	  low	  matrix	  
permeability	  shales.	  

• Finite	  difference	  based	  seismic	  wave	  propagation	  solver	  development	  
o Completed	  initial	  implementation	  

§ Isotropic	  elasticity	  formulation	  
§ Cross-‐code	  validation	  against	  SW4	  

o Anisotropic	  elasticity	  version	  under	  development	  to	  handle	  bedded	  
geologies	  and	  transversely	  anisotropic	  material	  response.	  

• Discrete	  element	  solver	  development	  for	  large	  deformation,	  massively	  parallel	  
applications	  

o Dynamic	  repartitioning	  under	  development	  	  
	  
A	  longer-‐term	  goal	  of	  the	  GEOS	  development	  effort,is	  the	  development	  of	  derivative,	  
fast-‐running,	  reduced	  complexity	  codes	  that	  can	  be	  traced	  back	  and	  verified	  using	  the	  
full	  GEOS	  code.	  	  In	  the	  interim,	  we	  maintain	  a	  2D	  modeling	  capabilities	  in	  GEOS	  that	  can	  
be	  utilized	  in	  reconnaissance	  evaluation,	  plane	  strain	  verification	  and	  validation	  (V&V),	  
and	  in	  uncertainty	  quantification	  and	  sensitivity	  analysis.	  The	  2D	  implementation	  also	  
provides	  a	  simpler	  visualization	  of	  the	  physical	  processes	  associated	  with	  stimulation.	  
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3.2.1	   Fully-‐Coupled	  Numerical	  Methods	  	  
Work	  has	  been	  completed	  for	  the	  explicitly	  integrated	  case,	  which	  relies	  on	  the	  
principles	  of	  "dynamic	  relaxation"	  to	  achieve	  a	  quasi-‐static	  solution	  of	  the	  stiff	  equations	  
governing	  the	  coupled	  hydro-‐mechanical	  system.	  However,	  more	  development	  is	  
currently	  being	  undertaken	  to	  improve	  robustness	  and	  decrease	  computational	  
intensity.	  We	  have	  recently	  completed	  the	  development	  of	  the	  fully-‐coupled	  implicit	  
solution	  as	  a	  more	  accurate	  alternative	  to	  the	  explicit	  approach.	  

3.2.1.1	   Explicit	  Developments	  
“Dynamic	  relaxation”	  uses	  an	  explicit	  time	  step	  with	  damping	  and	  increased	  inertial	  
terms	  (i.e.,	  density)	  to	  converge	  to	  the	  equilibrium	  solution	  rather	  than	  using	  implicit	  
iteration.	  Such	  an	  approach	  can	  be	  more	  robust	  for	  highly	  nonlinear	  systems	  but	  
requires	  that	  one	  make	  a	  sufficiently	  accurate	  initial	  guess	  during	  each	  time	  step	  (since	  
there	  is	  no	  iteration	  or	  correction).	  When	  we	  have	  no	  confinement,	  the	  approach	  lets	  us	  
use	  trivial	  guesses	  for	  the	  zero-‐stress	  initial	  fluid	  and	  contact	  states	  in	  newly	  created	  
surface	  area;	  because	  we	  have	  accurate	  initial	  guesses,	  and	  the	  further	  evolution	  of	  the	  
system	  is	  insensitive	  to	  fluid	  and	  contact	  stiffness,	  we	  can	  reduce	  the	  system	  stiffness	  
(and	  thereby	  use	  longer	  time	  steps	  to	  reduce	  computational	  effort)	  with	  only	  modest	  
(and	  bounded)	  increases	  in	  error.	  	  
	  
However,	  such	  trivial	  guesses,	  when	  used	  as	  the	  initial	  guess	  for	  non-‐zero	  stress	  state	  
case,	  become	  increasingly	  inaccurate	  as	  confinement	  increases,	  requiring	  us	  currently	  to	  
use	  the	  more	  accurate	  (and	  stiffer)	  fluid	  and	  contact	  properties	  to	  achieve	  the	  same	  
accuracy.	  This	  has	  the	  effect	  of	  driving	  down	  the	  time	  step	  necessary	  to	  relax	  the	  system	  
in	  a	  finite	  time	  period	  and	  drastically	  increases	  the	  computational	  effort.	  
	  
We	  are	  developing	  more	  appropriate	  initialization	  schemes	  for	  the	  fluid	  and	  contact	  
states	  associated	  with	  new	  areas.	  The	  logic	  for	  this	  has	  been	  implemented	  in	  a	  
development1	  branch	  of	  the	  code,	  but	  it	  has	  yet	  to	  be	  migrated	  into	  the	  production	  
branch	  that	  is	  currently	  being	  used	  to	  run	  the	  verification	  problems.	  	  

3.2.1.2	   Implicit	  Developments	  
The	  more	  established	  method	  for	  solving	  general,	  fully-‐coupled	  systems	  is	  through	  
iterative	  solution	  using	  implicit	  schemes.	  For	  this	  approach,	  we	  have	  developed	  a	  block-‐
solution	  approach	  to	  solve	  the	  system	  of	  coupled	  equations.	  The	  blocks	  are	  separated	  
into	  diagonal	  and	  off-‐diagonal	  blocks.	  The	  diagonal	  blocks	  are	  where	  the	  matrices	  for	  
particular	  atomic	  solvers	  (i.e.,	  a	  solver	  associated	  with	  a	  particular	  subset	  of	  the	  
degrees-‐of-‐freedom)	  are	  specified;	  for	  instance,	  the	  stiffness	  matrix	  associated	  with	  the	  
solid	  mechanics	  displacements	  may	  comprise	  a	  block	  while	  the	  permeability	  matrix	  
associated	  with	  the	  fluxes	  may	  comprise	  another.	  The	  off-‐diagonal	  blocks	  are	  where	  the	  
matrices	  associated	  with	  the	  coupling	  between	  atomic	  solvers	  are	  specified;	  for	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  For	  descriptions	  of	  the	  “production”	  and	  “development”	  branch	  distinctions,	  please	  see	  Appendix	  B	  
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instance,	  the	  off-‐diagonal	  blocks	  may	  describe	  how	  the	  permeability	  depends	  on	  
displacements	  or	  the	  stiffness	  depends	  on	  fluxes.	  
	  
The	  resultant	  system	  of	  equations	  is	  quite	  stiff	  due	  to	  the	  relationship	  between	  
interfacial	  displacements	  and	  (1)	  the	  permeability	  on	  the	  of	  the	  solid	  along	  fracture	  
boundaries,	  which	  exhibits	  cubic	  dependence	  and	  (2)	  the	  solid	  stiffness	  of	  the	  fluid	  
within	  the	  region	  between	  two	  fracture	  faces,	  which	  is	  characterized	  by	  small	  
dimensions	  and	  a	  non-‐linear,	  strain-‐stiffening	  modulus.	  Progress	  this	  quarter,	  however,	  
has	  included	  the	  implementation	  of	  block	  pre-‐conditioners	  to	  reduce	  the	  computational	  
cost	  of	  evaluating	  the	  system	  of	  equations	  and	  increased	  the	  robustness	  of	  the	  
solution..	  

3.2.1.3	   Contact	  
We	  have	  previously	  implemented	  models	  for	  a	  sub-‐fracture	  resolution	  of	  permeability	  
(Barton-‐Bandis-‐Bakhter)	  alongside	  the	  LDEC	  model	  (Livermore	  Discrete	  Element	  Code)	  
for	  joint	  dilation	  and	  normal	  response	  in	  the	  GEOS	  framework,	  enabling	  simulation	  of	  
dilating,	  rough	  fractures.	  We	  have	  also	  implemented	  a	  more	  advanced	  friction	  model	  
(i.e.,	  Dieterich-‐Ruina	  rate-‐and-‐state	  friction)	  along	  with	  empirical	  relationships	  between	  
the	  parameters	  of	  these	  models	  and	  the	  total	  organic	  content	  and	  clay	  weight	  (TOCC)	  of	  
source	  rocks	  as	  developed	  from	  data	  by	  Kohli	  and	  Zoback.	  

	  
	  
Figure	  7:	  Illustration	  of	  the	  contact	  between	  two	  sliding	  interfaces	  from	  an	  initially	  mated	  fractal	  fracture	  
surface	  

In	  addition	  to	  constitutive	  modeling,	  we	  have	  also	  been	  engaged	  in	  basic	  research	  on	  
the	  numerical	  methods	  to	  resolve	  small-‐displacement	  contact	  implicitly.	  A	  stabilized	  
algorithm	  based	  on	  Nitsche's	  method	  has	  been	  developed	  to	  enforce	  contact	  
constraints	  over	  continuous	  and	  discontinuous	  surfaces	  in	  the	  finite	  element	  method.	  
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This	  displacement-‐based	  method	  is	  more	  computationally	  efficient	  than	  penalty	  
methods	  and	  Lagrange	  multiplier	  methods,	  and	  it	  results	  in	  well-‐conditioned	  system	  
matrices.	  This	  allows	  us	  to	  now	  evaluate	  contacts	  implicitly	  in	  2D	  with	  both	  simple	  
Coulombic	  frictional	  response	  and	  frictionless	  response;	  significant	  progress	  has	  also	  
been	  made	  in	  applying	  the	  same	  techniques	  in	  3D.	  
	  
We	  will	  be	  extending	  this	  to	  address	  more	  complicated	  surface	  interaction	  behaviors	  
(e.g.,	  Barton-‐Bandis,	  etc.).	  
	  

	  
Figure	  8:	  Implicit	  contact	  algorithm	  in	  2D	  applied	  to	  sample	  with	  a	  pre-‐existing	  diagonal	  fracture	  (right)	  compared	  
with	  experiment	  (left).	  
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Figure	  9:	  z-‐displacement	  contours	  for	  the	  3D	  horizontal	  crack	  under	  frictionless	  sliding	  using	  Nitsche's	  method	  with	  
tetrahedral	  (top)	  and	  hexahedral	  elements	  (bottom)	  

3.2.2	  Proppant	  Modeling	  
The	  flow	  model	  includes	  several	  different	  fluid	  rheologies.	  These	  are	  currently	  fixed	  
in	  the	  flow	  solver;	  however,	  future	  developments	  would	  move	  these	  into	  a	  fluid	  
rheology	  library,	  allowing	  a	  user	  to	  select	  the	  model	  appropriate	  for	  the	  analysis.	  
This	  would	  also	  allow	  the	  user	  to	  introduce	  new	  fluids	  without	  directly	  modifying	  
each	  of	  the	  flow	  solvers.	  
	  
The	  proppant	  transport	  module	  contains	  a	  fixed	  number	  of	  different	  options	  for	  
describing	  settling	  and	  transport	  of	  the	  proppant	  particles.	  Future	  development	  
would	  allow	  the	  user	  the	  option	  of	  introducing	  additional	  forcing	  terms,	  including	  
wall	  effects	  and	  the	  effect	  of	  friction	  on	  the	  particle	  slip	  velocity.	  	  
	  
Currently	  the	  proppant	  is	  assumed	  to	  consist	  of	  mono-‐disperse	  particles.	  Future	  
development	  would	  extend	  the	  proppant	  transport	  module	  to	  account	  for	  separate	  
populations	  of	  proppant	  types	  and	  separate	  distributions	  of	  proppant	  particles.	  	  
	  
In	  order	  to	  maintain	  a	  sharp	  boundary	  between	  the	  settled	  and	  free	  flowing	  
particles,	  the	  proppant	  is	  modeled	  as	  both	  a	  body	  of	  particles	  in	  suspension	  and	  an	  
established	  proppant	  pack.	  The	  proppant	  pack	  currently	  behaves	  as	  a	  rigid	  body	  
with	  respect	  to	  the	  mechanics	  solver	  –	  maintaining	  the	  same	  aperture	  regardless	  of	  

 
 

 
Fig. 6. Contours of σ yy  obtained using Nitsche’s method 

(top) and the penalty method with a large penalty (bottom). 

 
Fig. 7. Comparison of interpenetration at the crack surface 
obtained using Nitsche’s method (shown in blue) and the 
penalty method with a finite penalty (shown in red). 

3.3. 3D Frictionless Contact 
We now extend the 2D plane-stress frictionless contact 
considered earlier in Section 3.2 and extend it to a three-
dimensional setting. The material has a Young's modulus 
of E = 10 Pa  and a Poisson's ratio of ν = 0.3. The crack 
surface is the plane z = 0.5 and is assumed to be 
frictionless. We clamp both the top and bottom surfaces 

and apply a displacement of uz  = -0.1 m on the top 
surface.  

 

 
Fig. 8. z-displacement contours for the 3D horizontal crack 
under frictionless sliding using Nitsche's method with 
tetrahedral (top) and hexahedral elements (bottom) 

We plot the z-displacement  contours for Nitsche's 
method using both hexahedral and tetrahedral elements 
in Figure 8. In Figure 9, we also plot the normal contact 
pressure obtained using both Nitsche's method and 
penalty method with a penalty parameter of αN = 1016 
Pa/m for tetrahedral elements. The checkerboarding 
pattern in contact pressures is evident for large penalties 
while Nitsche's method returns smooth pressures. 
Similar results were obtained with hexahedral elements 
as well though we have omitted them here to avoid 
repetition.   

3.4. Compressive Fracture with Frictionless 
Sliding on Crack Faces 

As a final example, we demonstrate the performance of 
the method in modeling compressive fracture under 
frictionless sliding.  We follow Nemat-Nasser and Horii 
[21] and consider a single inclined flaw in a square 
elastic block. The diagonal crack extends from (x,y) = 
(0.3 m, 0.3 m) to (x,y) = (0.7 m, 0.7 m). The top and 
bottom surfaces are clamped laterally while the bottom 
surface is clamped vertically as well. The loading is 
applied by compressing the top surface by applying a 
uniform displacement of uy  = - 0.1 m. Further, the 
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the	  stress	  experienced	  by	  the	  fracture.	  Future	  development	  would	  allow	  the	  pack	  to	  
respond	  to	  changes	  in	  stress,	  decreasing	  porosity	  with	  increased	  pressure.	  

3.2.3	   Flow	  and	  Transport	  Solver	  
We	  have	  completed	  the	  initial	  development	  for	  a	  three-‐dimensional	  finite	  element	  
implementation	  of	  a	  flow	  and	  transport	  solver	  for	  dual	  permeability	  systems	  by	  
leveraging	  previous	  code	  development	  experience	  and	  expertise	  from	  the	  
Nonisothermal,	  Unsaturated-‐Saturated	  Flow	  and	  Transport	  Model	  (NUFT)	  software	  
project.	  	  

	  
Figure	  10:	  Transient	  pressure	  behaviour	  (Rock	  permeability	  =	  0.01	  mD)	  

The	  summary	  of	  this	  development	  is:	  
• A	  control	  volume	  finite	  element	  (FE)	  based	  discrete	  fracture	  model	  has	  been	  

developed	  within	  the	  GEOS	  framework.	  
• Compared	  to	  the	  previously	  implemented	  cell-‐centered	  finite	  volume	  model	  this	  

finite	  element	  model	  is	  capable	  of	  more	  accurately	  handling	  very	  complex	  
geological	  features	  and	  fracture	  geometries.	  

• The	  model	  is	  able	  to	  provide	  high-‐fidelity	  near	  field	  solutions	  for	  fracture	  flow	  
and	  thermal	  (solute)	  transport,	  which	  can	  therefore	  be	  used	  to	  help	  perform	  up-‐
scaling	  studies,	  and	  calibrate	  current	  reservoir-‐scale	  continuum	  models	  (e.g.	  
equivalent	  continuum,	  dual-‐porosity/dual	  permeability	  models).	  

• The	  control	  volume	  finite	  element	  based	  discrete	  fracture	  flow	  model,	  which	  is	  
implemented	  within	  the	  GEOS	  framework,	  has	  been	  further	  tested.	  
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• A	  couple	  of	  new	  element	  types	  (“line”	  and	  “	  triangle-‐shell”)	  have	  been	  added	  in	  
order	  to	  handle	  2D/3D	  coupled	  fluid	  flow	  in	  both	  discrete	  fractures	  and	  
surrounding	  matrix	  rocks.	  

• A	  3D	  discrete	  fracture	  flow	  test	  case	  has	  been	  developed.	  
• GEOS	  parallel	  computing	  capability	  has	  been	  tested	  by	  running	  large	  3D	  fracture	  

flow	  test	  cases	  with	  using	  a	  variety	  of	  numbers	  of	  processors,	  ranging	  from	  16	  to	  
256.	  	  We	  have	  also	  conducted	  a	  preliminary	  scalability	  analysis	  of	  GEOS	  parallel	  
performance.	  	  

3.2.4	   Wave	  Propagation	  Solver	  
We	  have	  completed	  the	  initial	  development	  for	  a	  three-‐dimensional	  finite	  difference	  
based	  wave	  propagation	  solver	  leveraging	  previous	  code	  development	  experience	  and	  
expertise	  from	  the	  WPP	  and	  SW4	  software	  projects.	  
	  
This	  enables	  the	  next	  phase	  of	  microseismic	  source	  term	  modeling	  by	  allowing	  for	  direct	  
coupling	  of	  the	  source	  term	  into	  ground	  motion	  solutions	  using	  a	  consistent	  reservoir	  
representation.	  

	  
Figure	  11:	  Point	  source	  propagation	  calculated	  from	  GEOS;	  results	  are	  identical	  to	  SW4	  
	  

3.2.5	   Material	  Modeling	  
We	  have	  also	  focused	  on	  supporting	  a	  wider	  range	  of	  material	  behaviors.	  To	  accomplish	  
this	  goal	  we	  are	  (1)	  implementing	  an	  interface	  to	  the	  GEODYN	  material	  library	  and	  (2)	  
developing	  a	  new	  materials	  model.	  
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The	  GEODYN	  material	  library	  provides	  access	  to	  previously	  developed	  anisotropic	  
damage	  models,	  which	  had	  been	  developed	  for	  granite.	  We	  have	  finished	  and	  cross	  
code	  validated	  the	  implementation	  of	  the	  GEODYN	  material	  model.	  
	  
We	  have	  also	  embarked	  on	  a	  new	  effort	  this	  quarter,	  which	  first	  identified	  a	  number	  of	  
candidate	  models	  for	  shales	  under	  both	  quasi-‐static	  and	  dynamic	  loading.	  We	  then	  
selected	  to	  focus	  on	  one	  such	  model	  by	  Crook,	  which	  exhibits	  both	  anisotropic	  elasticity	  
and	  anisotropic	  plasticity.	  This	  model	  is	  an	  extension	  of	  work	  by	  Cazacu	  and	  Pietruszczak	  
to	  extend	  the	  isotopic	  modified	  Cam	  Clay	  critical	  state	  model.	  We	  have	  developed	  the	  
first	  iteration	  of	  an	  implementation	  of	  this	  model.	  

3.2.6	   Other	  Developments	  
We	  have	  also	  focused	  on	  supporting	  a	  wider	  range	  of	  reservoir	  situations.	  In	  this	  
quarter,	  we	  have	  implemented	  additional	  options	  for	  boundary	  and	  initial	  conditions.	  
	  
We	  implemented	  the	  ability	  to	  specify	  both	  material	  properties	  and	  initial	  stress	  states	  
according	  to	  three-‐dimensional	  tables	  of	  scalars,	  vectors,	  or	  tensors	  (depending	  on	  the	  
state	  to	  specify)	  or	  by	  analytical	  functions	  for	  scalar	  properties.	  This	  allows	  us	  to	  now	  
input	  realistic	  spatial	  distributions	  of	  properties,	  including	  bulk	  modulus,	  stress,	  density,	  
etc.	  

4.	   Future	  Work	  
Fracturing	  during	  hydraulic	  stimulation	  is	  most	  directly	  and	  immediately	  observed	  by	  
the	  microseismic	  response.	  	  GEOS	  simulates	  the	  time	  history	  of	  hydraulically	  induced	  
fracture,	  and	  comparison	  with	  observed	  seismicity	  requires	  that	  GEOS	  generate	  a	  source	  
term	  and	  then	  pass	  that	  to	  a	  seismic	  wave	  propagation	  code	  to	  produce	  synthetic	  
seismograms	  for	  surface	  and	  borehole	  seismic	  arrays.	  	  This	  is	  one	  of	  the	  initiative’s	  
primary	  deliverables	  and	  is	  the	  target	  deliverable	  for	  the	  final	  phase	  of	  the	  project.	  	  
	  

1. Couple	  finite	  difference	  solver	  with	  the	  microseismic	  source	  generation	  term	  
a. Enabled	  by	  recent	  completion	  of	  an	  initial	  version	  of	  the	  finite	  difference	  

wave	  propagation	  solver	  
b. Will	  provide	  a	  tool	  that	  can	  input	  a	  pumping	  schedule	  and	  output	  ground	  

motions.	  
	  

2. Bi-‐directionally	  couple	  microseismic	  source	  term	  model	  with	  constitutive	  model	  
a. Will	  be	  enabled	  by	  the	  completion	  of	  the	  anisotropic	  elasto-‐plastic	  model	  

based	  on	  an	  extension	  of	  the	  Cam	  Clay	  model	  
b. Will	  provide	  a	  realistic	  mechanical	  behavior	  changes	  due	  to	  the	  

generation	  of	  seismicity-‐inducing	  damage.	  
	  

3. Tri-‐directionally	  couple	  microseismic	  source	  term	  model	  with	  constitutive	  model	  
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a. Enabled	  by	  recent	  completion	  of	  an	  initial	  version	  of	  the	  finite	  element	  
based	  flow	  and	  transport	  solver	  

b. Will	  provide	  a	  realistic	  hydro-‐mechanical	  behavior	  changes	  due	  to	  the	  
generation	  of	  seismicity-‐inducing	  damage.	  
	  

4. Multi-‐scale	  refinement	  	  
a. Dual-‐scale	  paradigm	  for	  sequential,	  hierarchical	  multi-‐scale	  treatment	  
b. Will	  use	  Continuum	  Damage	  Mechanics	  (CDM)	  to	  predict	  the	  statistical	  

average	  response	  of	  cracked	  solids,	  without	  describing	  the	  real	  geometry	  
of	  each	  micro-‐crack	  

c. Will	  provide	  more	  realistic	  representation	  of	  the	  coupled	  hydro-‐
mechanical	  representation	  across	  multiple	  scales.	  

4.1	   Multi-‐scale	  Damage	  Modeling	  
For	  the	  last	  phase,	  it	  is	  necessary	  to	  pursue	  such	  a	  strategy	  in	  order	  to	  reduce	  the	  
number	  of	  degrees-‐of-‐freedom	  in	  the	  problem	  to	  a	  computationally	  tractable	  size	  given	  
that	  the	  memory	  and	  processing	  capacities	  of	  the	  HPC	  resources	  are	  already	  anticipated	  
to	  be	  limiting	  for	  the	  applications	  of	  interest.	  In	  micro-‐mechanical	  damage	  models,	  the	  
main	  challenge	  consists	  of	  characterizing	  the	  set	  of	  cracks	  present	  in	  the	  medium	  
according	  to	  their	  size	  and	  orientation.	  Within	  each	  set,	  crack	  growth	  is	  generally	  
controlled	  by	  a	  Griffith	  criterion.	  The	  natural	  dissipation	  variable	  should	  be	  the	  length	  of	  
the	  cracks	  within	  the	  set	  considered,	  but	  crack	  densities	  are	  generally	  preferred.	  For	  
each	  crack	  set,	  the	  thermodynamic	  variable	  conjugate	  to	  crack	  density	  is	  referred	  to	  as	  
the	  “affinity”	  or	  “damage	  force”.	  The	  Griffith	  criterion	  is	  met	  when	  the	  derivative	  of	  the	  
affinity	  to	  crack	  density	  is	  more	  than	  a	  certain	  critical	  value.	  If	  the	  threshold	  is	  reached,	  
crack	  densities	  must	  be	  updated.	  The	  damaged	  stiffness	  tensor	  can	  then	  be	  constructed	  
by	  accounting	  for	  the	  updated	  crack	  geometry	  in	  an	  appropriate	  homogenization	  
scheme	  (e.g.	  the	  self-‐consistent	  method	  or	  Mori-‐Tanaka	  scheme).	  
	  
In	  general	  terms,	  the	  steps	  necessary	  to	  implement	  this	  will	  be:	  

1. Determine	  constitutive	  relationships	  to	  predict	  microscopic	  crack	  initiation	  
and	  propagation.	  
a. Characterize	  the	  microstructure	  parameters	  and	  their	  conjugate	  

affinities.	  
b. Relate	  affinities	  to	  stress	  and	  microstructure	  parameters	  to	  texture-‐

related	  functions.	  
2. Determine	  the	  functional	  dependence	  of	  RVE	  size	  on	  microstructural	  

properties.	  
3. Determine	  appropriate	  coupling	  terms	  to	  achieve	  equivalence	  between	  

continuum	  (stochastic)	  and	  discrete	  representations.	  
4. Determine	  thresholds	  at	  which	  to	  advect	  microstructural	  damage	  into	  

explicitly	  represented	  fracture	  surfaces.	  
	  
Many	  parts	  of	  this	  approach	  are	  well-‐defined;	  however,	  despite	  some	  research,	  the	  
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connection	  between	  microstructural	  parameters	  and	  their	  conjugate	  affinities	  will	  be	  an	  
area	  that	  requires	  research	  to	  properly	  address.	  In	  general,	  the	  completion	  timeline	  for	  
the	  multi-‐scale	  approach	  will	  be	  difficult	  to	  forecast	  in	  the	  absence	  of	  identified	  funding.	  

4.2	   Uncertainty	  Quantification	  
Evaluating	  the	  uncertainty	  is	  an	  essential	  element	  of	  parametric	  testing	  of	  GEOS,	  its	  
application	  to	  forward	  predictions	  of	  reservoir	  stimulation.	  Also,	  by	  constraining	  the	  
sensitivity	  of	  various	  predictions	  to	  variations	  in	  reservoir	  and	  operational	  variables,	  UQ	  
constitutes	  an	  important	  precursory	  step	  to	  the	  development	  of	  derivative,	  reduced	  
complexity,	  fast	  running	  tools.	  	  Along	  with	  operational	  parameters,	  there	  are	  a	  variety	  of	  
uncertainties	  associated	  with	  the	  geologic	  model	  including	  the	  nature	  of	  pre-‐existing	  
fracture	  distributions	  and	  rock	  mechanical	  properties	  which	  require	  evaluation	  if	  
optimization	  is	  to	  be	  achieved.	  	  	  
	  
We	  have	  linked	  GEOS	  with	  the	  LLNL	  UQ	  code,	  PSUADE	  (Problem	  Solving	  environment	  for	  
Uncertainty	  quantification	  And	  Design	  Exploration)	  which	  is	  a	  suite	  of	  uncertainty	  
quantification	  modules	  capable	  of	  addressing	  high-‐dimensional	  sampling,	  parameter	  
screening,	  global	  sensitivity	  analysis,	  response	  surface	  analysis,	  uncertainty	  assessment,	  
numerical	  calibration,	  and	  optimization.	  Sensitivity	  curves	  have	  been	  established	  for	  a	  
number	  of	  process	  and	  geologic	  parameters	  in	  two-‐	  and	  three-‐dimensional	  systems;	  
however,	  a	  number	  of	  studies	  remain	  to	  be	  performed.	  

4.3	   High	  Strain	  Rate	  Fracturing	  
While	  much	  of	  our	  current	  effort	  is	  directed	  at	  optimization	  of	  the	  hydraulic	  stimulation,	  
we	  recognize	  the	  need	  for	  a	  computational	  tool	  to	  aid	  in	  the	  design	  of	  new	  stimulation	  
methods	  that	  minimize	  water	  use	  and	  potentially	  involve	  the	  use	  of	  energetic	  materials.	  
We	  have	  investigated	  the	  application	  of	  some	  types	  of	  energetic	  materials	  to	  the	  
subsurface,	  using	  the	  GEOS	  tool;	  however,	  a	  number	  of	  applications	  remain	  beyond	  our	  
capabilities.	  	  
	  
Here	  we	  describe	  the	  requirements	  for	  three	  separate	  scenarios	  utilizing	  energetic	  
stimulation.	  In	  the	  simplest	  case,	  we	  could	  use	  the	  current	  infrastructure	  with	  a	  special	  
time-‐dependent	  joint	  model	  to	  capture	  the	  behavior.	  In	  the	  ideal	  case,	  full	  coupling	  of	  
GEOS	  with	  GEODYN,	  a	  parallel	  transient	  Eulerian	  finite	  volume	  code	  with	  constitutive	  
models	  that	  are	  well	  suited	  for	  analyzing	  the	  dynamic	  response	  of	  geologic	  media,	  
would	  be	  undertaken.	  	  Use	  cases	  include:	  

4.3.1	   Deflagration-‐Induced	  Pressure	  Elevation	  in	  Fracture	  Network	  
In	  this	  case	  we	  do	  not	  need	  to	  consider	  the	  propagation	  of	  the	  shockwave	  associated	  
with	  detonation,	  but	  rather	  the	  introduction	  deflagration	  products	  as	  a	  source	  term	  to	  
produce	  the	  higher	  pressures.	  This	  is	  relatively	  straightforward	  within	  the	  existing	  GEOS	  
framework,	  and	  has	  been	  accomplished	  and	  demonstrated	  via	  a	  special	  boundary	  
condition	  as	  part	  of	  the	  initiative.	  
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4.3.2	   Detonation-‐Induced	  Pressure	  Pulse	  in	  Fracture	  Network	  
Simulation	  of	  this	  scenario,	  would	  require	  modification	  of	  our	  basic	  hydraulic	  fracturing	  
capability	  to	  enable:	  

1. Transmission	  of	  waves	  through	  the	  fluid.	  
2. Production	  of	  the	  actual	  shock.	  
3. Inelastic	  material	  models	  

	  
The	  confined	  nature	  of	  this	  problem	  may	  or	  may	  not	  lend	  itself	  to	  a	  simple	  quasi-‐two-‐
dimensional	  empirical	  approach	  that	  takes	  advantage	  of	  the	  parallel	  plate	  geometry	  of	  a	  
fracture.	  	  	  This	  application	  has	  been	  nominally	  investigated	  but	  requires	  further	  study	  to	  
determine	  whether	  GEOS	  should	  be	  extended	  in	  this	  way.	  

4.3.3	   Shock	  Wave	  Interaction	  Induced	  Tensile	  Damage	  Zones	  
This	  type	  of	  simulation	  requires	  strong	  coupling	  between	  GEOS	  and	  GEODYN.	  A	  fully	  
coupled	  3D	  GEOS/GEODYN	  code	  requires	  passing	  the	  fracture	  geometry	  to	  GEODYN	  
which	  then	  interprets	  the	  geometry	  and	  constructs	  volume	  fractions	  on	  its	  internal	  
regular	  grid	  representation,	  performs	  its	  calculations,	  then	  passes	  back	  vector	  forces	  for	  
each	  face	  it	  was	  given.	  Another	  complication	  is	  that	  not	  only	  is	  re-‐gridding	  required	  but	  
also	  information	  on	  the	  parallel	  partitioning	  of	  GEOS	  must	  be	  parceled	  out	  (efficiently)	  
to	  the	  spatial	  partitions	  in	  GEODYN	  that	  require	  the	  information.	  We	  have	  addressed	  
this	  with	  the	  Bifroest	  framework.	  	  Accomplishing	  this	  along	  with	  evaluation	  of	  
alternative	  approaches	  (use	  GEODYN	  as	  an	  initializer	  to	  a	  Lagrangian	  code	  rather	  than	  a	  
fully	  coupled	  simulation)	  would	  likely	  require	  at	  least	  2	  years	  of	  development	  effort.	  
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Appendix	  A:	  Work-‐flow	  
GEOS	  uses	  the	  common	  simulation	  design	  pattern	  of:	  mesh	  generation,	  input	  file	  design,	  
process,	  post-‐process.	  Specifically,	  the	  steps	  involved	  in	  an	  analysis	  include:	  
	  

1. Design	  the	  "input	  deck",	  a	  XML	  formatted	  file	  that	  describes	  the	  problem	  you	  
want	  to	  run	  and	  adheres	  to	  the	  XML	  Schema	  Definition	  (XSD)	  for	  GEOS.	  

2. Execute	  GEOS	  with	  the	  input	  deck	  file	  as	  an	  argument	  using	  the	  “-‐i"	  flag.	  In	  a	  
cluster	  environment,	  this	  often	  requires	  submitting	  a	  “job”	  to	  a	  “batch	  
manager”.	  The	  “batch	  manager”	  is	  software	  that	  is	  responsible	  for	  taking	  the	  
computational	  job	  and	  the	  requested	  resources	  (e.g.,	  10k	  processors	  for	  12	  
hours)	  and	  then	  either	  matches	  it	  with	  currently	  available	  resources	  or	  queues	  
the	  job	  according	  to	  the	  priority	  of	  the	  “bank”	  you	  are	  using.	  A	  bank	  has	  a	  
priority	  commensurate	  with	  the	  amount	  of	  time	  purchased	  with	  that	  bank	  
adjusted	  by	  the	  usage	  (for	  Livermore	  Computing,	  LC,	  this	  usage	  metric	  is	  
calculated	  over	  a	  two-‐week	  window).	  

3. Once	  the	  job	  has	  executed	  (and	  often	  mid-‐execution	  to	  make	  sure	  everything	  is	  
running	  smoothly),	  the	  results	  can	  be	  visualized	  and	  queried.	  	  the	  VisIt	  parallel	  
visualization	  software	  (downloadable	  from	  http://visit.llnl.gov)	  to	  render	  and	  
query	  the	  results	  for	  the	  desired	  data.	  This	  has	  been	  optimized	  for	  the	  LC	  
systems.	  

	  
We	  usually	  work	  on	  assembling	  workflows	  before	  running	  any	  analysis	  that	  will	  need	  to	  
be	  run	  multiple	  times	  with	  variations	  between	  runs.	  The	  workflows	  often	  consist	  of	  
Python	  or	  shell	  scripts	  to	  accomplish	  the	  steps	  above.	  This	  can	  mean	  extra	  time	  to	  set	  
everything	  up,	  but	  it	  ensures	  that	  each	  run	  is	  interpreted	  using	  the	  same	  protocol	  and	  
that	  the	  results	  remain	  comparable.	  
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Appendix	  B:	  Quality	  Assurance	  
Our	  development	  strategy	  involves	  having	  “development”	  and	  "production"	  lines	  of	  the	  
code.	  The	  production	  version	  represents	  the	  stable	  version	  of	  the	  code.	  Unless	  
otherwise	  noted,	  this	  is	  the	  version	  used	  to	  provide	  results	  to	  external	  parties.	  	  
	  
We	  also	  have	  a	  number	  of	  parallel	  “development”	  branches,	  which	  represent	  different	  
capabilities	  of	  differing	  maturity	  levels,	  which	  are	  under	  active	  development	  and	  may	  
not	  necessarily	  be	  ready	  to	  provide	  reliable	  results.	  The	  implicit	  solver	  is	  being	  
developed	  in	  one	  such	  branch	  of	  the	  code	  as	  are	  the	  implementations	  of	  the	  dual	  
permeability	  flow	  and	  transport	  and	  wave	  propagation.	  Once	  a	  capability	  is	  robust	  and	  
reintegrated	  with	  the	  production	  source,	  it	  is	  made	  available	  for	  performing	  analyses	  for	  
external	  parties.	  	  
	  
When	  a	  capability	  is	  migrated	  from	  development	  to	  production,	  it	  is	  typically	  treated	  as	  
an	  addition	  to	  the	  set	  of	  capabilities.	  For	  instance,	  once	  the	  implicit	  solver	  is	  fully	  tested	  
and	  migrated	  to	  production,	  a	  user	  would	  be	  able	  to	  run	  either	  with	  the	  current	  
dynamic	  relaxation	  approach	  or	  with	  the	  fully	  implicit	  solver.	  In	  order	  for	  such	  a	  
development	  branch	  to	  be	  integrated	  into	  the	  production	  line,	  however,	  it	  must	  first	  
pass	  a	  test	  suite	  (currently,	  400	  tests),	  which	  is	  meant	  to	  ensure	  that	  the	  results	  from	  
previous	  versions	  of	  the	  production	  line	  remain	  unchanged	  with	  changes	  to	  the	  source	  
code.	  Currently,	  the	  standard	  is	  high,	  requiring	  that	  results	  generated	  with	  successive	  
versions	  of	  the	  code	  must	  be	  the	  same	  down	  to	  a	  binary	  comparison	  of	  files	  produced	  
(for	  those	  tests	  common	  to	  both	  versions).	  	  In	  addition	  to	  passing	  the	  test	  suite,	  we	  also	  
advise	  the	  developer	  to	  include	  a	  new	  test	  (or	  tests)	  to	  ensure	  that	  any	  future	  
development	  will	  not	  compromise	  the	  capabilities	  he/she	  implemented.	  
	  
This	  represents	  a	  fairly	  common	  software	  development	  and	  quality	  assurance	  paradigm.	  
Because	  of	  this,	  we	  are	  able	  to	  use	  a	  number	  of	  powerful	  tools	  developed,	  used,	  and	  
supported	  by	  others	  to	  help	  us	  manage	  the	  process.	  We	  currently	  use	  the	  ATS	  test	  suite	  
management	  system	  (developed	  internally	  for	  the	  parallel	  environment	  at	  LLNL)	  and	  a	  
software	  version	  control	  system	  (the	  open	  source	  Git)	  to	  reduce	  the	  effort	  (and	  possible	  
sources	  of	  error)	  in	  managing	  the	  development	  and	  integration	  process.	  
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ABSTRACT 

Hydraulic fracturing has been an enabling technology 

for commercially stimulating fracture networks for 

over half of a century. It has become one of the most 

widespread technologies for engineering subsurface 

fracture systems. Despite the ubiquity of this 

technique in the field, understanding and prediction 

of the hydraulic induced propagation of the fracture 

network in realistic, heterogeneous reservoirs has 

been limited. Recent developments allowing the 

modeling of complex fracture propagation and 

advances in quantifying solution uncertainties, 

provide the possibility of capturing both the 

fracturing behavior and longer term permeability 

evolution of rock masses under hydraulic loading 

across both dynamic and viscosity dominated 

regimes. We present a framework for leveraging 

these advances in practical workflows for analyzing 

prospective and operating geothermal / hydrothermal 

sites. We will demonstrate the first phase of this 

effort through illustrations of fully three-dimensional, 

2-way coupled hydromechanical simulations of 

hydraulically induced fracture network propagation 

and discuss preliminary results regarding the 

mechanisms by which fracture interactions and the 

accompanying changes to the stress field can lead to 

deleterious or beneficial changes to the fracture 

network.  

 

This work was performed under the auspices of the 

U.S. Department of Energy by Lawrence Livermore 

National Laboratory under Contract DE-AC52-

07NA27344. 

 

INTRODUCTION 

Reservoir stimulation through hydraulic fracture is a 

critical element in unlocking the potential of 

geothermal energy production where natural 

permeability is inadequate (Figure 1). However, 

despite the fact that hydraulic fracturing has been in 

employed for almost 60 years, having first been used 

to simulate oil and gas wells in the early 1950’s, 

many uncertainties still surround its use. In particular, 

given the public scrutiny of hydraulic fracture 

operations due to concerns regarding its 

environmental impact and potential for induced 

seismicity, there is a need for robust models capable 

of determining:  

 The impact of hydraulic fracturing on caprock 

integrity; 

 Whether fractures will propagate as designed; 

 What seismicity will be induced as a result of the 

fracturing operation; 

 Whether recovered fluids will be released; and 

importantly, 

 Whether production rates will meet expectations. 

 

Addressing these questions is a difficult task. 

Modeling hydraulic fracturing in the presence of a 

natural fracture network is a complicated multi-

physics, multi-scale problem due to the coupling 

between fluid, rock matrix, and rock joints, as well as 

the interactions between propagating new fractures 

and existing natural fractures. Nevertheless, in recent 

years, a number of advances have allowed 

researchers in related fields to tackle the modeling of 

complex fracture propagation as well as the 

mechanics of heterogeneous systems. These 

developments, combined with advances in 

quantifying solution uncertainties, provide 

possibilities for the geologic modeling community to 

capture both the fracturing behavior and longer term 

permeability evolution of rock masses under 

hydraulic loading across both dynamic and viscosity 

dominated regimes. 

 

This paper describes the development of a 

computational capability focused on the creation, 

characterization, maintenance, and active 

management of optimal fracture networks for energy 

extraction from enhanced geothermal systems.  The 

primary component of this capability is the 

development of a high-fidelity geomechanics code, 

GEOS, a multi-scale, multi-physics, fracture 

mechanics model that will describe the development 



of fracture networks for different lithologies and 

applications as a function of initial geologic 

conditions, regional stress and stimulation work 

flows.  Here we present the first phase of this effort 

through illustrations of fully three-dimensional, 2-

way coupled hydromechanical simulations of 

hydraulically induced fracture network propagation 

and discuss preliminary results regarding the 

mechanisms by which fracture interactions and the 

accompanying changes to the stress field can lead to 

deleterious or beneficial changes to the fracture 

network.  

 

 

 
 

Figure 1: Schematic of an Enhanced Geothermal 

System with injection and production 

wells extracting heat from a stimulated 

volume of rock with low initial 

permeability [1]. 

 

MECHANICS AND FLOW  

Mechanics 

In this work, the deformation of meshed volumes is 

governed by a series of standard Lagrangian FEM 

solvers. Fundamentally these solvers enforce some 

form of the equations of motion 

  .- 0abT  
   (1) 

Depending on the application, (1) can take the form 

of a general mechanics solution, a static solution 

(a=0), as well as being cast in terms of first or second 

Piola-Kirchhoff tensors. In the cases presented here, 

an explicit dynamics solver is applied to the first 

Piola-Kirchhoff forms of (1).  

Parallel Plate Flow 

The flow of the fluid through the fractures is assumed 

adhere to the parallel plate flow assumptions [2,3]. 

Given a single edge connected to n faces where each 

face is given a local index i. To solve for the flow, we 

calculate the mass flux between the edge and each 

face. The fracture permeability of between the face 

and the edge i is given as 

,
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where i is the hydraulic aperture of the face, w is the 

length of the edge,  is the dynamic viscosity, and Li 

is the length from the center of the face to the center 

of the edge. The mass flow rate (mi ) from the face 

to the edge is easily expressed as  

 ,eeiiii PPm  
   (2)

 

where i is the density of the face, Pi is the fluid 

pressure on the face, e is the density at the edge, and 

Pe is the pressure at the edge. Applying conservation 

of mass at the edge provides a solution of e Pe as 
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Substituting (3) into (2) allows for the solution of the 

mass flux between the edge and the face. These 

relations (1-3) are implemented in both a time 

explicit transient solver, and a steady-state implicit 

solver.
 

FRACTURE 

The focus of this work to date is to provide the 

topological flexibility to model the creation of new 

surfaces. To this end, tools for splitting a mesh 

similar to those described by Settgast[4] have been 

further developed in the GEOS framework. In this 

approach, nodes, edges, and faces are split along 

element boundaries into separate entities. This is 

achieved when a closed path of faces that have 

attained a ruptured state can be found. This method 

of splitting along element boundaries is performed on 

a node-by-node basis and can be described through 

the following list of procedures: 

1. Determine the state on faces, and mark the faces 

that have achieved a ruptured state. 

2. For each node, find a closed path of faces that 

make up a “rupture plane” about which the node 

can be split. 

3. Split the node, any edges and faces.  

4. Repair connectivity between the nodes, edges, 

faces, and elements. 

With the preceding, the application of computational 

fracture mechanics is feasible. There are many 

methods by which to attempt this ranging from 

various cohesive zone approaches [4-6]. In this study 



we do not yet apply any of these methods, instead the 

mesh is simply broken, extending the fracture in the 

process. The implementation of a method for smooth 

crack opening will be pursued in future work. 

 

In the case of field scale studies, the mesh resolution 

required to resolve the stress field near the tip of a 

fracture is unattainable without some form of 

automatic mesh refinement near the tip. In cases 

where this is the case, methods may be used to 

estimate the stress field as given in [7]. If no such 

method is utilized, then a stress criteria for face 

rupture will likely be a compressive stress, as the 

unbounded stress field is dramatically under-

estimated by the resolution. 

SURFACE CONTACT 

Once fracture surfaces have been generated, they 

must be prevented from subsequent inter-penetration. 

In the general case, a contact methodology that 

allows for shear slip along the surfaces is desired. 

The general contact enforcement method in GEOS is 

a variation of the so-called “common-plane”  (CP) 

method. The CP method institutes face-to-face 

contact by detecting overlapping face geometries, and 

producing a penalty force resisting the contact. This 

approach is essentially described in described in [8], 

although refinements and modifications have been 

made. 

 

An alternative to the generalized approach, which 

bears significant computational cost, a simple method 

of surface contact enforcement is available when no 

shear slip is present. In this case, a penalty stiffness is 

enforced on the inter-penetration distance of formerly 

coincident faces (i.e. faces that used to be the same 

face prior to rupture). This method is used in the 

work presented in this study. 

COUPLED MECHANICS/FRACTURE/FLOW 

The coupling of mechanics solver with fracture 

capability to a fluid solver to represent the flow 

through the fractures is relatively straightforward. 

The first step is to define the flow mesh once the 

volumetric mesh is split. While there are many 

options for this, the method presented here is to 

define the flow mesh on the original 

faces/edges/nodes that have been split. While these 

objects are likely to be disconnected from each other, 

an alternate connectivity that links the original edges 

to the original faces (recall that these relations have 

been changed by the fracture process) can be used to 

define a contiguous mesh as far as the flow solver is 

concerned. 

 

Once a flow mesh is defined we focus on the method 

to couple the two solvers together. In essence the 

procedure for a time-explicit coupled solver is as 

follows: 

1. Perform flow solve using beginning of step 

apertures, and fluid pressures. This gives the 

mass in each fluid volume at the end of the step. 
1),(  nnn mPFluidSolve   

2. Update nodal velocities to mid-step, and 

displacements to end-of-step. 
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3. Update material state of the solid volume, and 

generate nodal forces from those volumes.
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4. Update the fluid pressure using the mass from 

step 1, and the volume at the end of the step. 

Specifically volume is the gap between the 

physical faces multiplied by the face area. 

  111,
 

nnnn PVmEOS  

5. Apply fluid pressure from a flow face as a 

boundary condition on the physical faces that are 

related to it. This is a simple pressure boundary 

condition to the mechanics solver. 

6. Calculate the acceleration of the nodes at the end 

of the step. 

 

EXAMPLES 

In the following examples, a linear elastic material is 

used for solid materials, and a simple linear equation 

of state is used for the fluid. The material properties 

are summarized in Table 1. 

 

Table 1: Summary of Material properties. 

Property Value 

Solid Bulk Modulus 15.0 GPa 

Solid Shear Modulus 15.0 GPa 

Fluid Bulk Modulus 0.1 GPa 

Fluid Pressure 7.0 MPa 

Min Horizontal Confinement 6.0 MPa 

Max Horizontal Confinement 8.0 MPa 

Vertical Confinement 10.0 MPa 

Dynamic Viscosity (k) 1.0e-3 N s/m
2
 

Rupture Stress Criteria* 5.2 MPa 

* note that the compressive value of rupture stress 

criteria is due to the under-resolution of the mesh, 

as discussed in the preceding section of fracture. 

 

The first example is a pseudo-2d representation of a 

horizontal plane (200m x 200m) with a 3 pre-existing 



fractures. The middle fracture runs perpendicular to 

the minimum principle stress, while the end fractures 

run in the direction of maximum horizontal principle 

stress as shown in Figure 1. The middle fracture is 

then pressured at its center, and a “tensile” stress 

develops at the crack tip as shown in Figure 1b. As 

shown in the middle figure, the fracture propagates 

until it joins with the end fractures. At this point the 

end fractures are pressurized (Figure 1c) and the 

simulation is terminated. 

 
Figure 2: Hydraulically induced extension of a pre-

existing fracture terminating on a 

perpendicular fault using on a pseudo-2d 

problem. Color scale indicates pressure, 

and stress in the minimum horizontal 

direction. 

 

The next example is the 3-dimensional hydraulic 

fracture propagation in a (200m x 200m x 200m) 

block. As was the case in the last example, a single 

fracture runs in the direction of minimum horizontal 

stress. In this case however, only a single fracture 

exists in the direction maximum horizontal stress. 

When the fracture is pressurized, the fracture adopts a 

circular shape, and begins to extend maintaining its 

shape. As expected, when the growing fracture joins 

with a pre-existing perpendicular fracture, growth 

ceases, and does not restart until both fractures are 

pressurized – at which point they begin to grow 

together. 

 
 

Figure 3: Hydraulically induced extension of a pre-

existing fracture terminating on a 

perpendicular fault using on a 3-

dimensional problem. Color scale 

indicates pressure, and stress in the 

minimum horizontal direction. 

 

While the preceding examples are a good illustration 

of rudimentary capabilities and allow for 

understanding the mechanisms at play during fracture 

propagation, our end goal is to model the stimulation 

of a large scale fracture network in 3-dimensions, as 

was done in 2-dimensions in [9]. While the capability 

for modeling this problem is remains under 

development, initial progress has been made. In the 

following example, a flow calculation is performed 

on the same 200m block with a pre-existing 3-

dimensional joint set as shown in Figure 3. A well 

source is placed in the lower near corner, while a 

recovery well is placed in the upper far corner.  The 

source well pressure is specified as 7 MPa, the 

recovery well pressure is specified as 5 MPa, and 

hydraulic aperture is fixed at 10 m.  

 
 

Figure 4: Flow calculation between a source and 

extraction well on block with a 3-

dimensional joint set. Color scale 

indicates fluid pressure. 

 

CONCLUSIONS AND DIRECTION OF 

FUTURE WORK 

In this study a methodology to simulate the evolution 

of fracture networks in 3-dimensions through a 2-way 

coupled finite element approach has been presented. 

Simple examples of hydraulically driven fracture, 

including the ability to join fractures has been shown. 

In addition, a simulation of flow through a set of 

three-dimensional fractures has been shown.  While 

the basic capabilities are promising, additional 

capabilities are required to achieve the goals of 

simulation of realistic fracture networks shown in 

Figure 5. To this end, future work seeks to develop 

and implement the following: 

 



1. Implementation of quadratic tetrahedral elements 

for greater flexibility in fracture propagation 

direction. 

2. Development and implementation of a method to 

estimate crack-tip stresses in 3-dimensions. 

3. Implementation of an AMR capability to greater 

resolve the material states at the crack-tips. 

4. A complete suite of implicit and explicit solvers 

to address different time scales, and the ability to 

transition between scales automatically. 

 

 

 
Figure 5: A realistic fault set derived from 

experimental data [10]. 
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a b s t r a c t

Conventional displacement-based methods for estimating stress intensity factors require
special quarter-point finite elements in the first layer of elements around the fracture tip
and substantial near-tip region mesh refinement. This paper presents a generalized form
of the displacement correlation method (the GDC method), which can use any linear or
quadratic finite element type with homogeneous meshing without local refinement. These
two features are critical for modeling dynamic fracture propagation problems where loca-
tions of fractures are not known a priori. Because regular finite elements’ shape functions
do not include the square-root terms, which are required for accurately representing the
near-tip displacement field, the GDC method is enriched via a correction multiplier term.
This paper develops the formulation of the GDC method and includes a number of numer-
ical examples, especially those consisting of multiple interacting fractures. We find that the
proposed method using quadratic elements is accurate for mode-I and mode-II fracturing,
including for very coarse meshes. An alternative formulation using linear elements is also
demonstrated to be accurate for mode-I fracturing, and acceptable mode-II results for most
engineering applications can be obtained with appropriate mesh resolution, which remains
considerably less than that required by most other methods for estimating stress
intensities.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The stress intensity factor (SIF) is an important concept in fracture mechanics for relating stress and energy release rate at
the fracture tip to loading and crack geometry. Although closed-form analytical solutions are available for a number of special
fracture-load configurations (many of which have been compiled in [1]), SIF’s are often calculated in the context of numerical
methods, especially the finite element method (FEM) for arbitrary fracture-load configurations. Several methods are available
for calculating or estimating SIF’s with the FEM, such as the J-integral [2] and its variants, the stiffness derivative technique
[3], and a suite of methods based on the interpretation of near-tip nodal displacements. In the last category, there are at least
three variants, including the displacement extrapolation method [4–7], the quarter-point displacement method [8], and the
displacement correlation method [9,10]. These methods and others have been compared in a number of studies [e.g. 5,11–
14]. One of the most significant advantages of the displacement-based methods is the simple formulation. Although the
displacement-based methods were often found to be less accurate than the J-integral or the stiffness derivative method
under certain conditions, the accuracy remains acceptable for most engineering applications [e.g. 5,14]. Many of the displace-
ment-based methods were developed in the 1970s and 1980s in tandem with various special ‘‘quarter-point’’ finite element
types [15–19] and transition elements [20] used in these methods. Though few new developments have been reported on the
displacement-based methods in the intervening decades [21], they continue to be widely used.
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The J-integral as well as its variants (e.g. M-integral) and the displacement-based methods all require accurate resolution
of near-tip displacement/stress/strain fields. Therefore special element types (e.g. quarter-point elements) and/or near-tip
element refinement are usually used as accuracy enhancement/assurance measures. The present study is motivated by engi-
neering applications where such enhancement is impractical in terms of computational cost but a moderate error margin
(e.g. 10%) is acceptable. The simulation of hydraulic fracturing in natural fracture systems represents this class of applica-
tions and is the direct motivation for the current study [22]. Simulating a hydraulic fracturing process usually involves mod-
eling multiple cracks propagating along arbitrary paths, so the locations of the crack tips are not specified a priori. Employing
any near-tip enhancement measures necessitates heterogeneous meshing, which is theoretically possible to handle but re-
quires complex variable mapping between meshes every time a fracture advances. This is extremely costly for hydraulic frac-
turing simulations because very small time steps have to be adopted to handle the wide spectrum of length-scales that have
to be resolved, spanning from tens of micrometers (the aperture width of typical rock joints) to hundreds of meters (dimen-
sion of the reservoir). Therefore, homogeneous and relatively coarse meshing without local refinement or frequent reme-
shing and variable mapping is the only viable option. Additionally, because we have to frequently handle the situation
where two fractures are close to each other before they intersect, it is desired to only use information in the first layer of
element surrounding a fracture tip. On the other hand, owing to the inherently high variability in rock properties and the
high uncertainty in the determination of rock properties, an error of 10–20% in the estimation of SIF is considered well
acceptable.

The goal of this study is to develop and verify a displacement-based method, termed the generalized displacement
correlation (GDC) method for estimating SIF, which uses regular finite element types and does not require local mesh refine-
ment. In the currently paper, we first review the mechanical and mathematical principles behind the original displacement-
based methods in a generalized context in Section 2. Compared with the original derivation of these methods, the loading
condition is generalized by including crack surface traction and the meshing scheme is generalized by circumventing the
dependency on the specific shape functions of quarter-point elements. This new GDC formulation encompasses the original
formulation based on quarter-point elements as a special case. Subsequently, we develop the new generalized formulation in
Section 3 and further enhance its accuracy in Section 4 by introducing an empirical correction multiplier term. In Section 5,
we test the new method against a number of fracture-load configurations with an emphasis on cases with inter-crack inter-
actions, a situation critical to our hydraulic fracturing simulator development effort. The numerical examples in Sections 4
and 5 use the same Poisson’s ratio and tip-region mesh configuration and use meshes based on a regular grid. The sensitivity
of the results to the Poisson’s ratio, near-tip mesh configurations, and mesh perturbation are evaluated in Sections 6 and 7.

2. Review of displacement-based methods in a generalized framework

Consider the two-dimensional (2D) continuum (linearly elastic and isotropic) around a crack tip as shown in Fig. 1, with
far-field normal (rf) and shear (sf) stress existing along with crack surface traction (rc and sc). Note that ‘‘traction’’ in this

Nomenclature

a, b, c, h variables denoting key geometrical characteristics of fracture-solid systems
CA

I ;C
A
II;C

B
I ;C

B
II correction multipliers for the GDC method. The superscript denotes whether it is for Method A or Method B;

the subscript indicates the mode of fracture
f a
r ; f

b
r ; f

c
r ; f

a
h ; f

b
h ; f

c
h functions of the angular coordinate of a point to simplify the expression of certain equations

FI, FII fracture-configuration correction factors related to geometrical characteristics of the fracture-solid system
G shear modulus of the solid
KI, KII mode-I and mode-II stress intensity factors
lE characteristic length of a finite element
P point load applied on a bending beam with a mid-span notch
r, h polar coordinates of a point
s span width of a bending beam with a mid-span notch
ua

r ;u
b
r ;u

c
r ;u

a
h ;u

b
h ;u

c
h radial and angular displacements of a point due to the three boundary condition modes (a, b, and c de

noted in Fig. 1)
ur, uh radial and angular displacements of a reference point. A superscript might be used to denote the reference point
b material constant depending on whether this is a plain-stress or plain-strain problem
d mesh perturbation factor
m Poisson’s ratio of the solid
rf, sf, rx, ry far-field stress components of the fracture-solid system
rc, sc fracture surface stress components
GDC generalized displacement correlation (method)
SIF stress intensity factor
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paper refers to stress distributed along fracture surface while the same term is often used in cohesive zone models for a
different meaning. Stresses rf, sf, rc, and sc are independent of each other, but the spatial variation of each of them is not
considered. Their values can be either positive or negative, with the arrows in Fig. 1 indicating the positive stress directions.
According to the superposition principle, the mechanical response of this system is the sum of the responses of the three
cases [(a)–(c)] to the right of the equal sign in the figure. Case (a) and case (b) respectively correspond to the classical bound-
ary/loading conditions for mode-I and mode-II fracturing, whereas in case (c) the crack surface traction balances the far-field
stress. Only the stress conditions in the two former cases [(a) and (b)] induce stress/strain singularities in the near-tip region,
while the latter case (c) generates homogeneous stress and displacement fields which contribute to the overall mechanical
response but not the near-tip stress singularity. The loading conditions in case (a) and case (b) are the symmetric and skew-
symmetric (antisymmetric) parts of the load that induce a near-tip stress singularity, respectively. Much of the development
of fracture mechanics disregards the tractions along the crack surface, so case (a) and case (b) have been the focus of previous
studies. In certain applications such as hydraulic fracturing, the pressure inside the fractures is the main mechanism for driv-
ing fracture extension with rc < rf < 0. Under such conditions, the stress condition in case (c) significantly contributes to the
mechanical responses of the system and cannot be overlooked.

With higher-order terms omitted, the displacement field (relative to the crack tip displacement) induced by loading case
(a) is

ua
r

ua
h

( )
¼ KI

G

ffiffiffiffiffiffiffi
r

2p

r cos h
2

� sin h
2

( )
b� cos2 h

2

� �
ð1Þ

where KI is the mode-I stress intensity factor; G is the shear modulus of the medium; b is a constant depending on whether
this is a plane strain (b = 2[1 � m] with m being the Poisson’s ratio) or a plane stress (b = 2/[1 + m]) problem. It we assume that
the elasticity parameters (G and b) are constants for a given problem, the equation can be simplified as

ua
r

ua
h

( )
¼ KI

ffiffiffi
r
p f a

r ðhÞ

f a
h ðhÞ

( )
ð2Þ

where f a
r ðhÞ and f a

h ðhÞ are functions of the angular coordinate (h) of the point where the displacement is measured. The effects
of the elasticity parameters are incorporated into these two functions and they are considered constants for the purpose of
this section. We can also write the corresponding equations for case (b), namely mode-II fracturing as
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h
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G
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Loading in Fig. 1c induces a homogeneous stress field quantified by rc, rx, and sc. rx is the normal stress component (not
denoted in Fig. 1) in the direction along the fracture tip, and is typically not concerned in fracture mechanics. The displace-
ment induced by this homogeneous stress field is

uc
r

uc
h

( )
¼ r

f c
r ðh;rc;rx; scÞ

f c
h ðh;rc;rx; scÞ

( )
ð4Þ

or

Fig. 1. The near-tip region of a 2D medium and the decomposition of fracture modes according to the superposition principle. The polar coordinate system
used in this study is denoted in the figure. Fracture openings in this and other examples are exaggerated for illustration purposes.

92 P. Fu et al. / Engineering Fracture Mechanics 88 (2012) 90–107



uc
r

uc
h

� �
¼ r

f c
r ðhÞ

f c
h ðhÞ

� �
ð5Þ

for any known stress state (rc,rx,sc). The explicit expression of functions f c
r and f c

h can be derived based on Hooke’s law, but it
requires knowledge of the stress state and is not pursued here. Note that the fc terms also encompass the effects of small
rigid-body rotation of the system, but this is not explicitly discussed in the following development. The most important
implication of Eq. (5) for the scope of this paper is that along any ‘‘ray’’ direction originating from the fracture tip, the dis-
placement of any point relative to that of the tip is linearly proportional to its distance to the crack tip under the homoge-
neous stress condition.

Combining Eqs. (2), (3), and (5), we can write the overall displacement field for the arbitrary loading condition in Fig. 1 as
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r
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h

� �
ð6Þ

with KI and KII being the unknowns while ur and uh can be obtained from FEM solutions.
In order to apply any displacement-based stress intensity calculation method, the medium containing the fracture needs

to be modeled using a finite element mesh. Quarter-point elements, with the inverse square root singularity embedded by
shifting the mid-edge nodes on the ray edges to the quarter-points, are usually employed as the first layer of elements
around the tip as shown in Fig. 2. Displacements along the crack face (h = p) at nodes A and B are obtained by solving the
finite element model. Noticing that f a

r ðpÞ ¼ 0 and f b
h ðpÞ ¼ 0, we have
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where lE is the length of the element edge (lE = |TB| = 4|TA| in this particular case). By applying basic linear equation manip-
ulation/solving techniques, we can eliminate the terms involving f c

r or f c
h and obtain
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p
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ð11aÞ

which is the core formulation for the displacement correlation method. The symmetry of the system can be exploited to
improve the accuracy of the results with
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TA
B

B'
A'

Fig. 2. Quarter-point element configurations near a crack tip.
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The formulation for the so-called quarter-point displacement method

KI ¼
uA

h � uA0
hffiffiffiffi

lE

p
f a
h ðpÞ

and KII ¼
uA

r � uA0
rffiffiffiffi

lE

p
f b
r ðpÞ

ð12Þ

is valid only if the terms involving f c
r and f c

h in Eq. (6) vanish, implying the loading of the system is the sum of case (a)
and case (b) excluding case (c) in Fig. 1, i.e. there is no traction along the crack faces. This limitation of the quarter-point
displacement method was described by Tracey [10] but has largely been neglected, as it does not apply to the typical loading
conditions in mechanical engineering, where crack surface tractions are absent. Although this limitation of the quarter-point
displacement method does not lead to inaccuracies in many studies comparing these two methods in the context of mechan-
ical engineering [12,13,19,23], it is highly deleterious if the method is to be used for hydraulic fracturing modeling or similar
problems. The displacement extrapolation method suffers similarly since the loading scenario shown in case (c) of Fig. 1 is
not supported in the assumptions underlying that method. Based on this, we select the displacement correlation method as
the basis for further development.

The original development of the displacement correlation method and the quarter-point displacement method derive the
same equations as Eqs. (11) and (12), respectively, through a different procedure. The purpose of the above development is to
provide the necessary basis for the development of the new generalized method in the next section.

3. Formulation of the generalized method

From the procedure in Section 2, we see that the core of the displacement correlation method is to solve equations of the
following form

ui ¼ f a
i

ffiffiffiffi
ri
p

KI þ f b
i

ffiffiffiffi
ri
p

KII þ rif c
i ð13Þ

where ui, f a
i , and f b

i are known from FEM solutions of the specific fracture-load configuration and near-tip region closed-form
solutions; KI and KII are the two unknowns to solve; f c

i can be removed by the following procedure. Because f c
i is a function of

the angular coordinate h but not the radial coordinate r, we can use known displacements (either ur or uh) and other
information (ri, f a

i , and f b
i ) at two points with the same angular coordinate h to eliminate the f c

i term. The symmetry and/
or skew-symmetry of f a

i and f b
i can also be used to directly eliminate KI or KII when solving for the other. The choice of

the four displacement components in obtaining Eqs. (7)–(10), namely uA
r ¼ urðlE=4;pÞ, uB

r ¼ urðlE;pÞ, uA
h ¼ uhðlE=4;pÞ, and

uB
h ¼ uhðlE=4;pÞ allows this approach. ri = lE/4 and ri = lE are used for convenience to exploit nodal displacements in the quar-

ter-point elements. However, displacements at other points (not necessarily nodes) can be used instead to solve Eq. (13).
Through this generalization of the original displacement correlation method, the special quarter-point element and near-

tip region mesh refinement can be eliminated, and we can substitute the displacements at appropriate reference points and
other necessary information into Eq. (13) to solve for SIF’s. In the selection of the reference points, we first consider points
with h = ±p, consistent with the original displacement correlation method, where the features of f a

r ðpÞ ¼ 0 and f b
h ðpÞ ¼ 0 sim-

plifies solution. If quadratic elements (i.e. shape functions are second-degree polynomials) are used, we can use r = lE/2 and
r = lE, which are both within the first layer of elements about the crack tip. Appealing to symmetry, we have
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Solving the above equations yield the formulation for the generalized displacement correlation (GDC) method as
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where the constants f a
h ðpÞ ¼ f b

r ðpÞ ¼ �b=
ffiffiffiffiffiffiffi
2p
p

G follow from Eqs. (1)–(3). This set of equations does not require quarter-point
elements around the crack tip, but does require quadratic elements (6-node triangle or 8-node quadrilateral in 2D). Since the
objective of this paper is to generalize the displacement correlation method, we further consider finite element models
where linear elements (3-node triangle or 4-node quadrilateral) are used. Under this condition, Eqs. (15) and (16) result
in zero SIF’s owing to the linear shape functions. Using displacements across two layers of elements around the tip (i.e. at
r = lE and r = 2lE) and replacing lE/2 in the above equations with lE and lE with 2lE solve this problem, but renders the method
impractical for modeling fractures with arbitrary paths. Fig. 3 shows two problematic scenarios commonly addressed
through FEM modeling of fractures: (a) sawtooth-shaped fractures typical in perturbed meshes where minor perturbation
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to node locations in the undeformed mesh is adopted to introduce randomness into fracture paths, and (b) a fracture having
changed the direction of propagation. In both scenarios, the locations of points (2lE, p) and (2lE, �p) are ambiguous, making
the method above inapplicable. To address this, we use displacements of points with h = �p/2, 0, and p/2 and r = lE and
r = 2lE, and also exploit the symmetry of f a

r and f b
h and skew-symmetry of f a

h and f b
r to obtain

urðlE;p=2Þ þ urðlE;�p=2Þ ¼ 2
ffiffiffiffi
lE

p
f a
r ðp=2ÞKI þ lE½f c

r ðp=2Þ þ f c
r ð�p=2Þ� ð17aÞ

urð2lE;p=2Þ þ urð2lE;�p=2Þ ¼ 2
ffiffiffiffiffiffiffi
2lE

p
f a
r ðp=2ÞKI þ 2lE½f c

r ðp=2Þ þ f c
r ð�p=2Þ� ð17bÞ

uhðlE;0Þ ¼
ffiffiffiffi
lE

p
f b
h ð0ÞKII þ lEf c

h ð0Þ ð17cÞ

uhð2lE;0Þ ¼
ffiffiffiffiffiffiffi
2lE

p
f b
h ð0ÞKII þ 2lEf c

h ð0Þ ð17dÞ

which yield

KI ¼
2urðlE;p=2Þ þ 2urðlE;�p=2Þ � urð2lE;p=2Þ � urð2lE;�p=2Þ

ð4� 2
ffiffiffi
2
p
Þ
ffiffiffiffi
lE

p
f a
r ðp=2Þ

ð18Þ

KII ¼
2uhðlE;0Þ � uhð2lE;0Þ
ð2�

ffiffiffi
2
p
Þ
ffiffiffiffi
lE

p
f b
h ð0Þ

ð19Þ

where the constants f a
r ðp=2Þ ¼ ð2b� 1Þ=4

ffiffiffiffi
p
p

G and f b
h ð0Þ ¼ ð1� bÞ=

ffiffiffiffiffiffiffi
2p
p

G. We term the GDC method based on Eqs. (15) and
(16) ‘‘Method A’’, and that based on Eqs. (18) and (19) ‘‘Method B’’. Method B can be applied to any finite element types, and
is therefore ‘‘more general’’ than Method A. Method A only requires displacements across one layer of elements around the
tip while Method B requires two layers. Neither Method A nor Method B requires a special meshing scheme at the near-tip
region, such as a mesh type or mesh resolution different from that of the remainder of the computation domain. Both meth-
ods are easy to implement in existing FEM packages. Note that the points where displacements are used in the calculation
need not to be nodes of the finite element mesh.

4. Enhancement of the generalized method

Error in the calculated stress intensity factors using the GDC method can be attributed to at least two sources:

(1) The inability of the adopted finite element’s shape functions to accurately represent the near-tip displacement field.
The quarter-point element family was originally formulated for the very purpose of better representing the near-tip
field by including a square-root term in the shape functions in the ray directions.

(2) Omission of higher-order terms in Eqs. (1) and (3). These equations are accurate at the near-tip region, where the dis-
tances to the fracture tip and other sources inducing high displacement gradient are much smaller than the length of
the fracture itself. In the GDC method, displacements at distances lE and 2lE (or lE/2 and lE) are used. Therefore, error
increases with the ratio of element size to the fracture length.

In order to demonstrate the accuracy of the GDC method, we use the proposed method on the simplest fracture system,
i.e. a finite-length fracture in an infinite domain as shown in Fig. 4. The fracture system considered here is straight crack of
length 2a in a 2D infinite medium. Since most FEM models can accurately represent the linear displacement field induced by
the loading condition in Fig. 1c, only the loading conditions in Fig. 1a and b are combined and modeled. However, the effects
of homogeneous stress fields are appropriately handled in the formulations of the GDC method, and the superposition of

(a) (b)
Fig. 3. Two common scenarios where the locations of points (2lE, p) and (2lE, �p) are ambiguous.
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such a field would not affect the calculated SIF’s. The near-tip mesh configuration can have a considerable effect on the accu-
racy of the original displacement-based methods (e.g. [23]); in all the numerical examples in the current and next section,
the mesh configuration shown in Fig. 5a is used, and fracture tips are located at nodes shared by eight triangular elements.
The other mesh configurations shown in Fig. 5 will be investigated in Section 6. In linearly elastic problems, the shear
modulus of the medium, G does not affect the calculated stress intensity factors and thus can be arbitrarily selected. The
model is assumed to be a plain-stress problem with a Poisson’s ratio of 0.2. The effects of the Poisson’s ratio will also be dis-
cussed in Section 6. The finite element mesh is sufficiently large (with each dimension longer than 100a) such that the effects
of the finite boundaries are minimal and the domain can be considered infinite. We use quadratic (6-node) triangle elements
with full-integration (three Gaussian points) for both Methods A and B in this study, although Method B is not restricted to
quadratic elements.

The theoretical solutions for the stress intensity factors in this crack configuration are KI ¼
ffiffiffiffiffiffi
pa
p

ry and KII ¼
ffiffiffiffiffiffi
pa
p

s.
Numerical solutions of the SIF’s, denoted by K 0I and K 0II are obtained by solving finite element models with various levels
of mesh resolutions (quantified by a/lE, the ratio of the half crack length to element length) and substituting the obtained
displacement values into Eqs. (15) and (16) or (18) and (19). We then seek an enhancement measure in the form of a ‘‘cor-
rection multiplier’’ to be added to Eqs. (15), (16), (18), and (19). We will test the performance of the corrected/enhanced
formulation on a number of more complex crack systems in next section for Methods A and B. The values of CI ¼ KI=K 0I
and CII ¼ KII=K 0II , which are the multipliers that need to be applied to Eqs. (15) and (16) or (18) and (19), respectively to
correct the numerical solutions are shown in Fig. 6 as functions of a/lE. The correction factors are significantly larger than
unity, since the 6-node triangular finite element cannot accurately represent the near-tip displacement field. CI and CII both
converge to constant values as the element size becomes smaller relative to the crack length. We can fit the discrete data
points with the following empirical relationship

Fig. 4. A finite-length crack in an infinite medium.

Fig. 5. Four mesh configurations considered in this study. The conventional six-node triangle element is used in all the numerical examples of the present
study but the mid-edge node is not shown in this figure.
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C ¼ a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2lE=a

p ð20Þ

which has a similar format as the correction term used in [24]. The regression results are

CA
I ¼

1:555ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:640lE=a

p ð21aÞ

CA
II ¼

2:831ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:163lE=a

p ð21bÞ

CB
I ¼

1:260ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:138lE=a

p ð21cÞ

CB
II ¼

1:727ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:845lE=a

p ð21dÞ

where the superscripts A and B of CI and CII indicate whether the correction multipliers are for Method A or Method B. The
coefficients of determination (R2) for all regressions are greater than 0.99.

The correction multipliers calculated using Eq. (21) converge but not to unity. This appears counterintuitive because even
though the shape functions (quadratic for the above calculations and linear if linear elements were used) of a single element
does not accommodate the square root terms in Eq. (6), refining the mesh (with smaller lE) should result in piecewise
quadratic shape functions for the mesh as a whole better representing the displacement field. However, regardless of the
refinement level, only displacements within the first one (Method A) or two (Method B) layers of elements around the frac-
ture tip are used. As the mesh is refined, the reference points where displacement information is used in the calculation are
closer to the fracture tip. For infinitesimal elements, this mechanism can eliminate the error induced by the second source of
error, but not the first. A similar phenomenon exist for the original displacement-based methods: Numerous studies have
observed that errors of these methods do not converge to zero as the near-tip mesh is refined [12,13,18,19,23] and an expla-
nation was offered by Harrop [25].

5. Accuracy of the generalized method for different fracture configurations

The values as well as the regression formula of the correction multipliers in Section 4 are obtained for a specific fracture-
load configuration. Considering that the main purpose of this correction term is to correct errors caused by the finite ele-
ments’ inability to accurately represent the near-tip displacement field described by Eqs. (1)–(3), we hypothesize that the
same multipliers can be applied to all other crack-load configurations and obtain reasonable SIF results. In this section,
we apply the correction multipliers obtained from the special case in Section 4 to a spectrum of fracture configurations
to test this hypothesis. Special attention is paid to coarse meshes and effects of interference between neighboring fractures
and between fractures and free surfaces. Achieving acceptable accuracy under these conditions is crucial for managing the
computational cost of the simulation of dynamic fracture propagation in complex fracture systems. Four test cases for which
closed-form solutions of SIF’s exist are carefully selected: The first case embodies the interference between fracture tip and
free surface boundary; the second deals with heterogeneous stress field; the last two cases represent interactions between
neighboring fractures. Both mode-I and mode-II SIF’s are considered whenever applicable. Both Method A and Method B are

(a) (b)
Fig. 6. The effects of the mesh resolution on the correction multipliers. (a) Results for Method A; (b) results for Method B.

P. Fu et al. / Engineering Fracture Mechanics 88 (2012) 90–107 97



evaluated for the first case in Section 5.1. Since the mathematical and mechanical principles behind these two methods are
similar, only the more general Method B is considered for the other three fracture-load configurations.

5.1. Center-cracked infinite strip with a finite width

Consider a center-cracked strip with an infinite length but finite width 2b. The crack is 2a long and perpendicular to the
longitudinal direction of the strip as shown in Fig. 7a. The strip is subjected to a tensile stress r in the longitudinal direction
and a uniformly distributed shear stress s along the fracture faces, inducing mode-I and mode-II stress concentration, respec-
tively. The stress intensity factors are

KI ¼ r
ffiffiffiffiffiffi
pa
p

FIða=bÞ and KII ¼ s
ffiffiffiffiffiffi
pa
p

FIIða=bÞ ð22Þ

where FI and FII are the fracture-configuration correction factors that can be estimated using the modified Koiter’s formula
[1]:

FIða=bÞ ¼ FIIða=bÞ ¼ ½1� 0:025ða=bÞ2 þ 0:06ða=bÞ� cos
pa
2b

	 
�1=2
ð23Þ

with a relative error of less than 0.1% for any a/b value. In this and other examples, if FI and FII are close to unity, it means this
fracture-load configuration is similar to the reference configuration of a single fracture in an infinite plane.

To apply the GDC method, the strip is discretized into a finite element mesh of a length that is more than 12 times longer
than its width, which is found to sufficiently approximate the infinite length according to a sensitivity analysis. Different
levels of mesh refinement with b/lE ranging from 4 to 64 as well as various crack length-to-strip width ratios, i.e., a/
b = 0.125, 0.25, 0.50, 0.75, and 0.875 are adopted to investigate the effects of these two factors. Due to the symmetry of
the crack and mesh configuration, the tensile stress r does not contribute to the calculated KII and s does not contribute
to KI. In all the numerical examples in Section 4, a Poisson’s ratio of 0.2 and the crack tip mesh configuration shown in
Fig. 5a (eight triangle elements connected to the tip) are used. The effects of the Poisson’s ratio and crack tip mesh config-
uration will be studied in Section 6. To allow precise comparison, the calculation results of the GDC method (both Method A
and Method B) with the correction multipliers computed using Eq. (21) applied, as well as the theoretical solution based on
Eq. (23) are shown in Tables 1A–2B. Note that the values of FI and FII, instead of the stress intensity factors KI and KII are
shown. FI and FII can be considered normalized values of the SIF’s. Due to the relationships described in Eq. (22), the relatively
errors for KI and KII are the same as those for FI and FII, respectively.

The results show that Method B for mode-I fracturing and Method A for both mode-I and -II are fairly accurate for all the
scenarios considered, including those with very coarse meshes. The relative errors are generally smaller than 2% with few
exceptions. The accuracy of Method-B for mode-II fracturing seems to be dependent on the fracture geometry and mesh
resolution. For b/lE = 4 with a/b = 0.5, b/lE = 8 with a/b = 0.75, and b/lE = 16 with a/b = 0.875, erroneous results are obtained.

Fig. 7. Center-cracked infinite strip with a finite width. (a) The crack configuration; (b) the mesh for the case where b = 8lE and a/b = 0.75 (with opening of
the fracture exaggerated). The reference points used by Method A and Method B are indicated in the figure.
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In these three situations, the fracture tip is two elements away (i.e. (b � a)/lE = 2) from the lateral boundary. One of the dis-
placement components used in Eq. (19), uh(2lE, 0) happens to be at the lateral boundary. The mechanical response at this
point is substantially affected by the free-surface boundary condition and violate an assumption of the GDC method. This
is not an issue for Method A or the calculation of KI using Method B because none of the displacement components used
in Eqs. 15, 16, and (18) is at the boundary. At the same mesh refinement level, if the distance between the crack tip and
the lateral free-surface boundary is 4lE instead of 2lE, the relative error for KII (Method B) is approximately between 20%
and 40%, which though suboptimal for typical mechanical engineering applications is often acceptable for geo-science or
geo-engineering scenarios due to the high aleatoric uncertainty in geo-systems. Nevertheless, if the crack tip is 6lE or farther
away from the free surface, the error drops below 10% for KII by Method B.

5.2. Three-point bending beam with a notch at mid-span

Consider a beam specimen with a span-to-height ratio of s/b = 4 with a notch of length a cut at the mid-span as shown in
Fig. 8. The beam is subjected to a mid-span force P. Due to the symmetry of the configuration, the mode-II stress intensity
factor is zero, and for mode-I

Table 1A
Calculated FI values using the GDC method (Method A) for the center-cracked infinite strip.

a/b FI, numerical result Relative error (%) FI(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/Aa N/Aa 1.011 1.004 1.007 N/Aa N/Aa 0.1 �0.6 �0.2 1.009
0.25 N/Aa 1.038 1.032 1.036 1.040 N/Aa �0.1 �0.7 �0.3 0.1 1.039
0.50 1.168 1.171 1.179 1.186 1.189 �1.5 �1.3 �0.6 0.0 0.3 1.186
0.75 N/Aa 1.595 1.612 1.622 1.628 N/Aa �1.8 �0.8 �0.1 0.2 1.624
0.875 N/Aa N/Aa 2.271 2.288 2.300 N/Aa N/Aa �1.3 �0.5 0.0 2.300

a N/A, numerical results unavailable due to the incompatibility between the a/b value and the mesh configuration.

Table 1B
Calculated FI values using the GDC method (Method B) for the center-cracked infinite strip.

a/b FI, numerical result Relative error (%) FI(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 1.008 1.011 1.009 N/A N/A �0.1 0.2 0.0 1.009
0.25 N/A 1.036 1.040 1.038 1.037 N/A �0.3 0.1 �0.1 �0.1 1.039
0.50 1.196 1.186 1.182 1.183 1.184 0.8 0.0 �0.4 �0.3 �0.2 1.186
0.75 N/A 1.640 1.618 1.617 1.619 N/A 1.0 �0.4 �0.5 �0.3 1.624
0.875 N/A N/A 2.325 2.295 2.291 N/A N/A 1.1 �0.2 �0.4 2.300

Table 2A
Calculated FII values using the GDC method (Method A) for the center-cracked infinite strip.

a/b FII, numerical result Relative error (%) FII(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 1.013 1.000 1.006 N/A N/A 0.3 �0.9 �0.3 1.009
0.25 N/A 1.040 1.030 1.038 1.045 N/A 0.1 �0.8 �0.1 0.6 1.039
0.50 1.165 1.172 1.188 1.201 1.208 �1.8 �1.2 0.2 1.2 1.8 1.186
0.75 N/A 1.579 1.621 1.645 1.658 N/A �2.8 �0.2 1.3 2.1 1.624
0.875 N/A N/Aa 2.241 2.294 2.323 N/A N/A �2.6 �0.3 1.0 2.300

Table 2B
Calculated FII values using the GDC method (Method B) for the center-cracked infinite strip.

a/b FII, numerical result Relative error (%) FII(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 1.021 0.994 1.001 N/A N/A 1.1 �1.6 �0.8 1.009
0.25 N/A 1.027 1.018 1.031 1.041 N/A �1.2 �2.0 �0.8 0.2 1.039
0.50 0.014b 0.972 1.132 1.181 1.200 �98.8 �18.1 �4.5 �0.4 1.2 1.186
0.75 N/A �0.841b 1.124 1.502 1.610 N/A �152 �30.8 �7.6 �0.9 1.624
0.875 N/A N/Aa �1.710b 1.432 2.070 N/A N/A �174 �37.8 �10.0 2.300

b Degenerate results; see discussion below. The Bold typeface used in other tables highlights degenerate results owing to similar reasons.
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KI ¼
3Ps

2b2

ffiffiffiffiffiffi
pa
p

FIða=bÞ ð24Þ

where FI(a/b) is the fracture-configuration correction factor, with similar meaning to its counterpart in Eq. (22) but different
values. Its value can be calculated using the following dimensionless regression equation proposed by Srawley [26] with a
relative error smaller than 0.5%

Fða=bÞ ¼ 1:99� a=bð1� a=bÞ½2:15� 3:93a=bþ 2:7ða=bÞ2�
ð1þ 2a=bÞð1� a=bÞ3=2 ffiffiffiffi

p
p ð25Þ

To test the accuracy of the GDC method on this configuration, we perform FEM analysis with different levels of mesh refine-
ment and different notch lengths. The results of Method-B are summarized in Table 3 in a manner similar to that of Tables 1
and 2. The results are generally accurate. In the worst case scenario, where the height direction of the beam is discretized
into four element, the relative error is 11.7%, which remains acceptable for many engineering applications. As the mesh is
refined, the numerical results for each geometrical configuration generally converge to the closed-form solution with some
minor fluctuation (a few tenths of a percent), which is within the 0.5% error inherent in the closed-form solution. The accu-
racy is compromised when the notch is short or long compared with the beam height (e.g. a/b = 0.125 or 0.875). In both
cases, the points where the displacements are used in the GDC method have similar distances to the notch tip and to the
lower or upper free surface of the beam and are not within the near-tip region.

5.3. Two finite-length fractures along a single line

In Sections 5.3 and 5.4, we investigate the accuracy of the GDC method for scenarios with multiple fractures interacting
with each other. We first consider the configuration shown in Fig. 9, where two finite-length fractures along a single line
existing in an infinite plane. This configuration tends to strengthen the stress intensity at the two tips A and B, compared
with the configurations whether each crack exists alone in an infinite plane. For any tip under a given far-field stress con-
dition (r and s), the stress intensity factors (mode-I and mode-II) are dependent on certain geometrical features of the sys-
tem, and the following closed-form solutions are available [1]

KA
I ¼ r

ffiffiffiffiffiffi
pb
p

FA
I ða=b; c=bÞ ð26aÞ

KA
II ¼ s

ffiffiffiffiffiffi
pb
p

FA
IIða=b; c=bÞ ð26bÞ

KB
I ¼ r

ffiffiffiffiffiffi
pa
p

FB
I ða=b; c=bÞ ð26cÞ

and KB
II ¼ s

ffiffiffiffiffiffi
pa
p

FB
IIða=b; c=bÞ ð26dÞ

where

P

a
b

sP/2 P/2

Fig. 8. Three-point bending beam with a mid-span notch.

Table 3
Calculated FI values using the GDC method for the three-point bend beam (Method B only).

a/b FI, numerical result Relative error (%) FI(a/b) Eq. (25)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 0.944 0.965 0.972 N/A N/A �5.1 �3.0 �2.3 0.995
0.25 N/A 1.013 1.005 1.003 1.001 N/A 0.5 �0.2 �0.4 �0.6 1.007
0.50 1.581 1.468 1.422 1.409 1.406 11.7 3.7 0.4 �0.5 �0.7 1.416
0.75 N/A 3.623 3.439 3.369 3.352 N/A 8.2 2.7 0.6 0.1 3.349
0.875 N/A N/A 9.469 9.075 8.929 N/A N/A 7.1 2.6 1.0 8.843
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FA
I ¼ FA

II ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aA
p 1� 1

aB
1� EðkÞ

KðkÞ

� �� �
ð27aÞ

FB
I ¼ FB

II ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aB
p 1� 1

aA
1� EðkÞ

KðkÞ

� �� �
ð27bÞ

with aA ¼ a=ðaþ cÞ, aB ¼ b=ðbþ cÞ, and k ¼ ffiffiffiffiffiffiffiffiffiffiffi
aAaB
p

and

KðkÞ ¼
Z p=2

0
ð1� k2 sin2 uÞ�1=2du ð28aÞ

EðkÞ ¼
Z p=2

0
ð1� k2 sin2 uÞ1=2du ð28bÞ

In the numerical solutions, we fix the length ratio of the two fractures to be a/b = 0.5 and investigate the effects of the mesh
refinement levels (b/lE = 4, 8, and 16) and the distance between the two fracture tips (c/b = 1/2, 1/4, 1/8, and 1/16 whenever
applicable). The finite element model is more than 50b long in each dimension to minimize the boundary effects. The numer-
ical results for the two crack tips A and B are summarized in Tables 4 and 5, respectively.

The trends observed in this series of results are similar to those from Sections 5.1 and 5.2. Method B of the GDC method is
more accurate for mode-I stress intensity than for mode-II. Even under pathological conditions, i.e. mesh coarseness limit
reached and strong numerical coupling between the two tips, the error is of the order of 10%. The accuracy for mode-II is
non-ideal but still acceptable for many applications. The only exceptions are when the two tips are only two elements away
from each other. In this situation, uh(2lE, 0) used in Eq. (19) for a tip is the displacement of the other tip, resulting in strong
numerical coupling between the two fractures. In these situations, Method A is more appropriate since it uses displacements
‘‘behind’’ fracture tips, where less numerical coupling between the two fractures is expected.

5.4. An infinite array of parallel fractures in an infinite plane

Consider the fracture configuration shown in Fig. 10 where an infinite array of parallel finite-length cracks are periodically
arranged on an infinite plane subjected to far-field stress. The interaction between fractures tends to reduce mode-I stress
intensity but enhance mode-II stress intensity. The stress intensity factors are KI ¼ r

ffiffiffiffiffiffi
pa
p

FIða=hÞ and KII ¼ s
ffiffiffiffiffiffi
pa
p

FIIða=hÞ
where FI and FII are the crack configuration correction factors as functions of the crack length and the interval between neigh-
boring cracks. The analytical solutions for FI and FII are unavailable but well-accepted numerical solutions are presented in
[1] and are plotted as continuous curves in Fig. 11. In the FEM solution of this study, we investigate the effects of mesh
refinement level (a/lE = 16, 8, 4, and 2) and distance between adjacent fractures (a/h). Due to the periodicity of the

Fig. 9. Two finite-length fractures along a single line in an infinite plane.

Table 4
Calculated stress intensity for the two-fracture case at crack tip A (Method B only).

b/c FI, numerical result FI, relative error (%) FII, numerical result FII, relative error (%) FI, FII anly. solu.

b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16

2 1.027 1.036 1.041 �1.5 �0.6 �0.2 0.975 1.015 1.035 �6.5 �2.7 �0.7 1.043
4 1.044 1.071 1.090 �5.1 �2.7 �0.9 0.318 1.004 1.068 �71.1 �8.7 �2.9 1.100
8 1.137c 1.113 1.163 �5.6c �7.7 �3.5 N/A 0.246 1.076 N/A �79.6 �10.7 1.206

16 N/A 1.249c 1.248 N/A �9.3c �9.3 N/A N/A 0.185 N/A N/A �86.5 1.377
32 N/A N/A 1.445c N/A N/A �11.4c N/A N/A N/A N/A N/A N/A 1.632
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configuration, only one crack and the surrounding medium need to be included in the mesh with appropriate periodic
boundary conditions applied. The width of the mesh is more than 50 times the crack length to minimize the effects of
the far-field lateral boundaries. As shown in Fig. 11, the results of the GDC methods (Method B only) are fairly accurate
for mode-I with relative errors below 10%. The results for mode-II are less accurate and the most significant factor affecting

Table 5
Calculated stress intensity for the two-fracture case at crack tip B (Method B only).

b/c FI, numerical result FI, relative error (%) FII, numerical result FII, relative error (%) FI, FII anly. solu.

b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16

2 1.078 1.113 1.122 �4.2 �1.1 �0.3 0.978 1.058 1.098 �13.1 �6.0 �2.5 1.126
4 1.117 1.197 1.238 �11.2 �4.8 �1.5 �0.526 1.038 1.177 �142 �17.4 �6.3 1.257
8 1.304c 1.287 1.387 �10.9 c �12.1 �5.2 N/A �0.370 1.204 N/A �125 �17.7 1.464

16 N/A 1.533c 1.541 N/A �12.9 c �12.5 N/A N/A �0.270 N/A N/A �115 1.761
32 N/A N/A 1.878 c N/A N/A �13.4 c N/A N/A N/A N/A N/A N/A 2.169

c Limit of the mesh coarseness reached where only one element exist between tip A and tip B. KII cannot be calculated at this level of mesh refinement
using Method B.

Fig. 10. Parallel finite-length fractures in an infinite plane.
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the accuracy is h/lE. When h/lE = 4 (i.e. eight elements between adjacent cracks), the relative error can be as high as 30% for
large a/h values, but the ascending trend of the FII � a/(a + h) curve can still be reproduced. When h/lE = 2, the relative error
becomes unacceptably large and fails to represent the general trend of the FII � a/(a + h) curve. Among all the numerical
cases, the shortest distance between neighboring cracks is 4lE (i.e. h/lE = 2). If the neighboring cracks are only 2lE apart, Meth-
od B for mode-I will fail because all the displacement components used in Eq. (18) would be zero due to the symmetry of the
problem, yielding zero stress intensity. This condition dictates the largest element size that can be used for mode-I.

6. The effects of mesh configurations and the Poisson’s ratio

In all the numerical examples in Sections 4 and 5, the Poisson’s ratio is assumed to be 0.2. As shown in Eq. (1), the
Poisson’s ratio is related to the value of b thereby affecting the near-tip displacement field. As mentioned in Section 3,
the accuracy of the GDC method (without enhancement through the correction multipliers) depends on the ability of the
finite element in representing the near-field displacement field. Therefore, it is expected that the values of CI and CII are
dependent on the Poisson’s ratio. We repeat the numerical examples on a single fracture in an infinite plane in Section 4 with
Poisson’s ratios ranging from 0 to 0.4, and the correction multipliers required for obtaining accurate SIF’s for different mesh
refinement levels are shown in Fig. 12. A unified regression model is established by assuming the two constants in Eq. (20) to
vary linearly with respect to the Poisson’s ratio, and the regression results are

CB
I ¼

1:226þ 0:206mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:349� 1:125mÞlE=a

p ð29aÞ

CB
II ¼

1:737� 0:048mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:874� 0:179mÞlE=a

p ð29bÞ

The effects of the Poisson’s ratio are more significant for mode-I than for mode-II. Even for mode-I, ignoring these effects by
using the correction multipliers for m = 0.2 introduces less than 4% incremental error to the calculated SIF’s for arbitrary Pois-
son’s ratio.

The correction multipliers are also dependent on the near-tip mesh configuration. All the previous numerical examples
are based on the mesh configuration shown in Fig. 5a where eight triangular elements are connected to the tip node. The
other thee configurations in Fig. 5 are also common in FEM analysis. We repeat the numerical analysis in Section 4 with
the additional mesh configurations to determine the correction multipliers for different configurations and the results for
a Poisson’s ratio of 0.2 are shown in Fig. 13. Note that mesh-i, mesh-ii, and mesh-iii use the same space discretization scheme
with the only difference among them being in the location of the crack tip and the crack orientation. For a given mesh, the lE
value of mesh-iii is

ffiffiffi
2
p

times larger than that for mesh-i and mesh-ii. To use mesh configuration iv, lE in Eq. (18) is replaced
with l0E

ffiffiffi
3
p

lE=2. This constrains the solution to only use the displacements of points within two element layers of the tip.
The trend of the variation of the correction multipliers with respect to the mesh refinement level is the same for all the

mesh configurations. The curves become relatively flat when a/lE > 8. In configurations i and iii, the near-tip region is discret-
ized into eight elements in the angular direction while it is discretized into four elements for mesh-ii. Better refinement in
the angular direction improves the displacement field representation, yielding correction multipliers closer to unity. In the
region with a radius of 2lE around the tip, more elements are involved in mesh-iii than in mesh-i (the mesh is the same for
these two configurations but lE for mesh-iii is longer), enabling a better displacement field representation. Despite these
observations, the effects of the mesh configurations on the correction multipliers are moderate. If we used the correction
multipliers for mesh-i on mesh configuration ii, it would induce an error of 4%.

(a) (b)
Fig. 12. The effects of the Poisson’s on the correction multipliers for (a) mode-I and (b) mode-II at different mesh refinement levels. The effects on CII are
small and the regression curves are not plotted. Only the results for Method B are shown.
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Additionally, though all the examples in this paper are for plane-stress conditions using Method B, application of the gen-
eralized Method B to plane-strain conditions or Method A to plane-strain and plane-stress conditions is straightforward.

7. The effects of mesh perturbation

In the previous numerical examples, the finite meshes are all based on regular grids and the fractures align with the grids.
In this section, we investigate the effects of mesh perturbation on the accuracy of the GDC method. Only the mesh pattern
shown in Fig. 5a is tested but the qualitative observations should apply to all mesh patterns. A mesh perturbation factor d is
introduced to quantify the degree of perturbation. The x- and y-coordinates of each end-edge node is moved from its original
location in the regular mesh by a distance that follows a uniform distribution between –dlE and dlE. The mid-edge nodes are
moved accordingly. The nodes along external boundaries and existing fractures are not perturbed in order to maintain the
geometrical configurations of the system. Three levels of perturbation with d = 0.1, 0.2, and 0.3 are considered. For a given
level of perturbation, different mesh patterns can be obtained by altering the seed value for the random number generator
used in the meshing routine. Eight individual and independent random realizations are analyzed as a simple random sample
for each perturbation level. Both Method A and Method B are evaluated in this section wherever appropriate. For the per-
turbed mesh, we still use the characteristic element size parameter lE of the parent regular mesh, which is essentially the
average element size in the perturbed mesh. The correction factors derived based on the regular mesh are applied.

The two fracture-loading configurations investigated in Sections 5.1 and 5.3, representing fracture-boundary and frac-
ture-fracture interactions, respectively, are assessed. These two configurations are termed the ‘‘finite strip’’ case and ‘‘dual
fracture’’ case in the following description. One relatively coarse mesh resolution is used for each case. For the finite strip
scenario, b/lE = 16 and a/lE = 12, so the distance between the fracture tip and the lateral boundary is approximately four times
the element size. One of the reference points used by Method B for mode-II is at the middle point between the fracture tip
and the free surface boundary, not strictly speaking in the near-tip region. The error for this particular case is approximately
31% as shown in Table 2-B, and Method B for mode-II is inappropriate for this particular case. We present the results with
mesh perturbation for this case anyway for the sake of completeness, but this limitation should be born in mind. For the dual
fracture scenario, b/lE = 8, a/lE = 4, and c = lE, so there is only two elements between the two fracture tips, which made Method
B for mode-II inapplicable because one of the reference points for a fracture tip is at the tip of the other tip, as illustrated by
the very poor results corresponding to this particular scenario in Table 4 (bold font). Therefore, KII using Method B for the
second fracture-loading configuration is not pursued here. The mesh patterns and locations of reference points are illustrated
in Fig. 14.
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Fig. 13. The effects of near-tip mesh configurations on the correction multipliers for (a) mode-I and (b) mode-II at different mesh refinement levels.

Fig. 14. Perturbed mesh and location of reference points. (a–c) are all based on the finite strip configuration in Section 5.1 and they have perturbation factor
d = 0.1, 0.2, and 0.3, respectively; (d) is based on the dual fracture configuration investigated in Section 5.3 and only the mesh for d = 0.3 is shown. Note that
reference points for Method B on perturbed mesh generally do not coincide with nodes.
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The calculation results of the GDC method for individual random realizations of different mesh perturbation levels are
shown in Figs. 15 and 16, for the finite strip case and the dual fracture case, respectively. Considering the stochastic nature
of mesh perturbation, we also present some statistical analysis results in Tables 6A and 6B. As expected, mesh perturbation
affects the GDC calculation results in a random manner, with a greater degree of perturbation causing greater variation of SIF
results. Mode-II results seem to be more sensitive to mesh perturbation that mode-I results. The mean of SIF results by Meth-
od A appears to be unaffected by mesh perturbation, whereas mesh perturbation slightly increases the mean of mode-I SIF by
Method B. Note that the results of mode-II SIF by Method B for both cases tested are inherently inaccurate due to inadequate
mesh resolution for these particular cases. The results for the finite strip case are shown here only to illustrate the additional
errors induced by mesh perturbation. In most cases, even relatively severe mesh perturbation induces less than 10% addi-
tional error, whereas practical needs for mesh perturbation more severe than d = 0.3 are very rare. More importantly, these
numerical examples demonstrate that the GDC method is reasonably robust and its general accuracy does not rely on the
symmetry or regularity of meshing.

8. Concluding remarks

Compared with the original displacement-based methods for calculating stress intensity factors, the generalized displace-
ment correlation (GDC) method proposed in this paper has two advantages: (1) It is designed to work with conventional
finite element types, and (2) it uses a homogeneous mesh without local refinement around fracture tips. The former feature
makes it convenient to implement the new method in existing finite element packages. The latter is important for modeling
dynamic fracture propagation problems where the locations of fractures are not known a priori. These two features are crit-
ical to engineering applications where adopting special element types and local refinement are impractical, such as in the
simulation of hydraulic fracturing in complex natural fracture systems.

We propose two suites of formulations, termed Method A and Method B, for the GDC method. The former utilizes dis-
placement information within one layer of elements around the fracture tip, and requires quadratic or higher-order finite
elements. The latter can work with any element types, but requires displacements within two layers of elements. To enhance

Fig. 15. Results of the GDC method for the finite strip case with perturbed meshes. (a) Results for Method A; (b) results for Method B. Each data point
represents one random realization of a mesh perturbation level. The horizontal coordinates of some data points are slightly offset to enable visually
separating mode-I and mode-II data points. The margins for 10% relative error are shown in this figure.

Fig. 16. Results of the GDC method for the dual fracture case with perturbed meshes. (a) Results for Method A; (b) results for method B. Results for mode-II
with method B are not presented for reasons described above.
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accuracy of both methods, a correction multiplier is also proposed. Without this correction term, the accuracy of the GDC
method is limited due to the inability of regular finite element types to accurately represent the near-tip displacement field.
Through a series of numerical examples with a variety of crack configurations, we find that that the new GDC method is
acceptably accurate for calculating mode-I stress intensity factors. Even in the limit of mesh coarseness when there is only
one element between the two tips of the adjacent fractures, the error is of the order of 10%. The accuracy of Method B for
mode-II is less than for mode-I, but acceptable results for most engineering applications, especially for geo-engineering
applications, can be obtained even with coarse meshes. Severe errors are inevitable if the points where displacements are
used for the calculation are very close to other fracture tips or boundaries of the computation domain. However, this is
not unique to the GDC method, and other comparable methods suffer under the same conditions because the near-tip region
is inadequately resolved. To correctly model these problems (e.g. tips close to each other or to the boundaries), sufficiently
fine meshes must be adopted.

We found that the correction factor is a function of a number of variables for a give near-tip mesh configuration, including
fracture length relative to element size, the Poisson’s ratio, and random mesh perturbation. However, if we ignore these ef-
fects, by using correction factors derived for infinitely long fractures with a nominal Poisson’s ratio of 0.2 on a regular mesh,
the error is still likely to be within 10%.

Only the correction multipliers for quadratic six-node triangle elements are presented in this paper. Correction multipli-
ers for any combination of element type and mesh configuration can be easily determined through a small number of FEM
simulations following the procedure in Section 4. Only one crack-loading configuration needs be considered, and the resul-
tant correction multipliers can be used in arbitrary fracture-load configurations with the same mesh.
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An explicitly coupled hydro-geomechanical model for simulating
hydraulic fracturing in arbitrary discrete fracture networks
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SUMMARY

Modeling hydraulic fracturing in the presence of a natural fracture network is a challenging task, owing to
the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between
propagating fractures and existing natural interfaces. Understanding these complex interactions through
numerical modeling is critical to the design of optimum stimulation strategies. In this paper, we present
an explicitly integrated, fully coupled discrete-finite element approach for the simulation of hydraulic
fracturing in arbitrary fracture networks. The individual physical processes involved in hydraulic fracturing
are identified and addressed as separate modules: a finite element approach for geomechanics in the rock
matrix, a finite volume approach for resolving hydrodynamics, a geomechanical joint model for interfacial
resolution, and an adaptive remeshing module. The model is verified against the Khristianovich–Geertsma–
DeKlerk closed-form solution for the propagation of a single hydraulic fracture and validated against
laboratory testing results on the interaction between a propagating hydraulic fracture and an existing
fracture. Preliminary results of simulating hydraulic fracturing in a natural fracture system consisting of
multiple fractures are also presented. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hydraulic fracturing is widely used by the energy industry (e.g., stimulation of gas shales, enhanced
geothermal systems, etc.) to increase permeability of geological formations through the creation of
hydraulically driven fractures and coupling of these new higher permeability flow paths with
the natural fracture networks in the rock. A number of methods have been developed to make
direct and indirect field observations on the hydraulic fracturing process, including mineback
experiments, tiltmeter and microseismic mapping, pumping pressure diagnosis, and others. [1–4].
Numerous analytical and numerical hydraulic fracturing models have been developed to help
interpret these observations (e.g., [5–10]). Despite the variety of existing models, there remains a gap
between the state-of-the-art methodologies for modeling hydraulic fractures and the imminent needs of
industry to improve prediction of hydraulically driven fracture behavior in the presence of complex
preexisting fracture networks at field scales. Field data have demonstrated the complex patterns of new
hydraulic fractures and remobilized preexisting fractures in naturally fractured reservoirs (e.g., [1, 11]).
However, much attention from the hydraulic fracture modeling community has focused on scenarios
with highly idealized fracture geometries. The classic Perkins–Kern–Nordgren and Khristianovich–
Geertsma–DeKlerk (KGD) models [5, 7–9] and contemporary incarnations (e.g., [12, 13]) only address
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propagation of a single fracture with assumed geometries in a homogeneous medium. The pseudo-3D
(P3D) and planar 3D (PL3D) models [10, 14] are capable of addressing some of the issues with the
homogeneous medium assumption by simulating fractures vertically extending through multiple geologic
layers, but each simulation can only handle one crack lying in a single vertical plane. Other available
numerical models for hydraulic fracturing generally approach modeling from one of two directions:
rigorously address the solid–fluid coupling for a single fracture in a homogenous medium or address the
relatively complex network, but with little or no ability to capture the creation of new fractures [15–21].

Here, we present a numerical method for simulating hydraulically driven fracturing in relatively
complex preexisting/natural fracture systems, under the assumptions of quasi-static plane-strain
deformation, laminar Newtonian flow in fractures, and an impermeable rock matrix. This numerical
model is based on assumptions compatible with those for the KGD model, but the new model can
handle arbitrary rock toughness and the interactions between multiple fractures. The organization of
the paper is as follows: Section 2 of the paper describes the overall simulation strategy and the
coupling scheme between the multiple physical processes involved. The algorithmic aspects of the
individual components in the model are described in Section 3. In Sections 4 and 5, we verify and
validate the model against available closed-form solutions for the propagation of a single fracture
and laboratory experimental data on the interaction between two fractures, respectively. Finally, we
present a preliminary example of the stimulation of a naturally fractured reservoir with an arbitrary
preexisting fracture network.

2. STIMULATION STRATEGY AND COUPLING SCHEME

The aforementioned gap between existing simulation capabilities and the need for modeling arbitrary
fracture systems is largely due to the intrinsically complex nature of the hydraulic fracturing process. A
variety of inter-dependent physical mechanisms, including flow within the discrete fracture network in
the presence of changing joint permeability, rock deformation caused by both interaction between the
pressurized fluid in the joint and changing stresses within the rock matrix, and evolution of the fracture
network and rock matrix topology as fractures propagate over time, must be appropriately handled to
result in reasonable hydraulic fracturing simulation.

Existing analytical models often accommodate the interactions between the mentioned mechanisms by
implicitly coupling them into the governing equations. Because of the complexity of the interactions, only
a subset of the mechanisms, usually in highly simplified and idealized forms, can be incorporated into
such equations. To avoid this limitation, our numerical model adopts an explicit coupling simulation
strategy where individual modules are developed to model these distinct physical mechanisms with
their interactions embodied by the data/information exchange between the modules. Because the solid
and fluid solvers share the same time-integration approaches, the overall error from this approach of
coupling remains second-order. Important modules in our numerical model include the following:

• A FEM geomechanics solver for linearly elastic solid and a linear elastic fracture mechanics
(LEFM) component to resolve trajectory and growth rate of propagating fractures.

• A finite volume method (FVM) hydrodynamics flow solver for viscous, laminar flow.
• A geomechanical joint model to capture the nonlinear, hysteretic behavior of the interfacial
interactions as well as the coupling to permeability changes.

• An adaptive remeshing module for generating topologically compatible meshes between the finite
elements and finite volume elements.

Figure 1 illustrates the coupling of these modules. The algorithmic aspects are described in the next
section. In real geological settings, a number of additional phenomena may be important depending on
the application, including anisotropy, creep, plastic deformation, geochemical interactions, thermal
effects, and others, which are also possible to treat by this numerical model with enhanced modules,
but are beyond the scope of the present paper. The objective here is to develop a numerical model
for hydraulic fracturing that can reasonably handle interactions between solid and fluid and those
between fractures with a relatively rigorous treatment of fracture mechanics. The formulations of the
constitutive modules in this paper serve this objective, and thus simple forms are preferred. Because
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of the modular design of the simulation framework and the explicit coupling method, each module can
be easily modified or upgraded when necessary, as long as the interfaces with other modules are
appropriately handled.

3. FORMULATION OF INDIVIDUAL MODULES

3.1. Finite element method solid solver

The finite element module uses the six-node isoparametric triangular plane-strain element known as the
linear-strain triangle or the Veubeke triangle, and linear elasticity and small deformations are assumed
for the intact material response. The solver uses a central-difference explicit time-integration scheme.
At each time step, t, the nodal force vector Fi(t) acting on a node i has four contributions: (i) elastic
deformation of the elements connected to the node; (ii) fluid pressure if the node is associated with a
flow cell; (iii) contact stress if this node is associated with a closed joint; and (iv) external forces
such as those acting at the stress-controlled boundaries. In the explicit time-integration scheme, the
dynamic responses are solved on a nodal basis as follows.

��ui tð Þ ¼
Fi tð Þ � FC

i tð Þ
mi

(1)

�ui t þ Δts=2ð Þ ¼ �ui t � Δts=2ð Þ þ ��ui tð ÞΔts (2)

ui t þ Δtsð Þ ¼ ui tð Þ þ �ui t þ Δts=2ð ÞΔts (3)

where ui, �ui, and ��ui are the nodal displacement, velocity, and acceleration vectors, respectively. FC
i is the

nodal damping force, and only the mass-proportional term of the Rayleigh damping is used in this model.
To reduce the computational constraints, the high frequency components in the dynamic response are
filtered through the use of the damping term, which is commensurate with the quasi-static assumptions
of the process. The mass of an element is distributed to the six nodes, with 1/19 of the element mass
assigned to each vertex node and 16/57 to each mid-edge node (Section 16.2.4 in [22]). Δts is the time
increment used in the solid solver and a CFL coefficient of 5% is used to ensure numerical stability.
Typical hydraulic fracturing processes are quasi-static. The motivations for using a dynamic solver are
to provide a robust solving scheme for this ill-conditioned problem and to enable a straightforward
interface to couple with other modules.

3.2. Hydrodynamics solver for discrete flow network

Fluid flow in open rock fractures is idealized as laminar flow between two parallel plates employing
lubrication theory. The governing equations used in typical hydraulic fracturing models are
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Figure 1. Important modules in the hydraulic fracturing simulator and their coupling.

2280 P. FU, S. M. JOHNSON AND C. R. CARRIGAN

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2278–2300
DOI: 10.1002/nag



@q

@l
þ @wh

@t
¼ 0 (4)

k
@P

@l
¼ �q (5)

k ¼
wh
� �3
12mf

(6)

where l represents the length along the fracture; q is the local flow rate in the fracture at a given cross-
section; wh is the local time-dependent hydraulic aperture size; P is the local fluid pressure; and k
represents the permeability of the fracture, which is a function of the dynamic viscosity mf of the fluid
and the local aperture size wh. Equation (4) is the continuity (mass conservation) equation; Equation (6)
is the permeability equation, according to the laminar parallel plate flow assumption. These governing
equations are solved with a two-dimensional FVM formulated on the basis of a three-dimensional
approach described by Johnson and Morris [23]. This approach and the modifications are described here.

Implementations of FVM employ either node-centered (vertex-centered) or element-centered (cell-
centered) formulations, and our model uses the latter. To avoid ambiguity, we use the nomenclature of
‘cell’ to denote a finite volume flow element and ‘element’ to denote a solid finite element. As shown in
Figure 2, flow connections (corresponding to fracture networks in the solid phase) are discretized and
visualized as line segments. For a given cell, i, the parameters correspond to length, LCi, fluid mass
inside the cell, mCi, volume, VCi, hydraulic aperture size, wh

i as well as the associated permeability,
kCi according to Equation (6), fluid pressure, PCi, and so on, where the subscript ‘C’ abbreviates
‘cell’. In a cell representing an open fracture, the aperture size can be approximated by the distance
between the two fracture walls calculated in the solid solver, and the volume is the product of length
(area in 3D) of the cell along the direction of fracture extension, and the aperture size, that is,
VCi = LCiw

h
i . The formulation for closed fractures subjected to compression will be discussed in

Section 3.5. Fluid pressure and aperture size vary within each cell, so PCi represents the pressure
value at the cell center, and wh

i is the average aperture width of the cell.
The flow solver employs an explicit integration scheme, which makes it convenient to couple the

flow solver and the solid solver. At each time step, the flow rate of the flow cells is evaluated on a
node-by-node basis (note the distinction between the solid node and flow node). Assume there are
NC
I cells connected to the same flow node I; flow rate from a cell to the common node (i.e., outflow)

is assumed to be negative; and the fluid pressure at this node is PI. The flow rate between cell I-i
(the ith cell connected to node I) and node I is

qI�i ¼
2kI�i PI � PI�ið Þ

LI�i
(7)
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Figure 2. Two-dimensional flow network modeled by the finite volume method.
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To satisfy mass conservation, we have

XNC
I

i¼1
qI�i ¼ 0 (8)

Combining Equations (7) and (8) yields

PI ¼
P

PI�ikI�i=LI�iP
kI�i=LI�i

(9)

and subsequently, the flow rate of each cell can be computed according to Equation (7). A special, yet
very common case is that a flow node is connected to only two cells, denoted as cell i and cell j. In this
particular case, the flow rate from cell i to cell j can be simplified as

qij ¼
2 Pi � Pj

� �
kij

Li þ Lj
(10)

where kij is the homogenized permeability with

kij ¼
kikj Li þ Lj

� �
kiLi þ kjLj

(11)

By looping through all the flow nodes, we calculate the flow rate of each cell from and to its two nodes,
thereby obtaining the mass increment and updated fluid mass in the cell. The local fluid pressure is related
to the fluid density through the following equation-of-state (EOS)

PCi ¼
Kf 1� rrefVCi

mCi

� �
ifmCi=VCi⩾rref

Pvap ifmCi=VCi < rref

8<
: (12)

where Kf is the bulk modulus of the fluid; rref is the reference density of this fluid, namely the density at
zero or the datum pressure; Pvap is the temperature-dependent vapor pressure of this fluid, which is
assumed to be zero, as the pumping pressure is typically many orders of magnitude higher than the
vapor pressure. For any given fluid, the three parameters mf, Kf, and rref are dependent on temperature,
and to a lesser extent, the pressure. These parameters are assumed to be constant in all the numerical
examples of this paper unless otherwise indicated, but temperature-dependent and pressure-dependent
material parameters can also be specified in the model. At the end of this step, fluid pressure is
calculated for all the flow cells, and the procedure is repeated in successive time steps. The coupling
between the solid phase deformation and the fluid flow is completed through the joint model, which
applies the fluid pressure to the solid mesh elements that are interfaced with the cell and alters the
aperture according to the geometric distance of the interfacing surfaces. Despite the simple form, this
approach captures salient features of flow in narrow joints caused by a pressure gradient, and mass
conservation and pressure variation in flow channels with constantly varying volume (i.e., varying
aperture size). The second mechanism can cause discontinuity in the system and violate Equation (4),
which is mediated through the EOS (12).

In this approach, fluid bulk modulus Kf acts as a component of the contact stiffness as well as of the
EOS. The governing Equations (4)–(6) are essentially formulation for incompressible fluid, but Kf is
used in the EOS to relate fluid density to pressure. The role of Kf in this solver is similar to that of
material density in an explicit solid solver for quasi-static problems. That is, as a pseudo-inertial
term, the fluid compressibility can be judiciously reduced to achieve a longer critical time step
without sacrificing accuracy of the quasi-static analysis. We have empirically found that as long as
the value of Kf is significantly greater than the fluid pressure, the simulation results are insensitive.
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3.3. Fracturing criterion

A fracturing criterion determines whether new fracture surface should be generated and along which
direction the fracture should propagate by evaluating certain mechanical quantities at tips of existing
fractures. The fracturing criterion in the current model is based on the ‘critical stress intensity factor’
concept in linear elastic fracture mechanics (LEFM). Mode-I and mode-II stress intensity factors (SIF),
KI and KII are calculated using the generalized displacement correlation (GDC) method, and the
propagation direction is determined using a maximum circumferential stress criterion for mixed-mode
fracturing. Details of the GDC method and the evaluation of its accuracy are described in a separate
paper [24], and we present the essence of this method here for completeness of the current paper.

3.3.1. Generalized displacement correlation method. In the original displacement correlation
methods [25–30], SIF’s are calculated from nodal displacements near the fracture tip based on
analytical solutions for near-tip region displacement. It requires the use of special quarter-point
elements [25, 28] in the first layer of elements around each tip, which makes it very difficult to be
used in simulations of dynamic fracture propagations, where locations of fracture tips constantly
evolve and are not known a priori. To overcome this problem, we have developed a generalized
form of this method, called the GDC method, which uses regular linear or quadratic finite element
types and can produce accurate results with relatively coarse mesh without near-tip refinement.

The finite element mesh near a fracture tip is shown in Figure 3. Quadratic elements (six-node
triangle or eight-node quadrilateral) with mid-edge nodes are used. For plane-strain condition, SIF’s
can be calculated as

KI ¼ �
ffiffiffi
p
p

CIG 2uAθ � 2uA’θ � uBθ þ uB’θ
� �

2 1� nð Þ 2�
ffiffiffi
2
p� � ffiffiffiffi

lE
p (13)

KII ¼ �
ffiffiffi
p
p

CIIG 2uAr � 2uA’r � uBr þ uB’r
� �

2 1� nð Þ 2�
ffiffiffi
2
p� � ffiffiffiffi

lE
p (14)

where G is the shear modulus of the solid; n is the Poisson’s ratio; lE is the characteristic length of the
element as denoted in Figure 3; CI and CII are correction multipliers; ur and uθ are the polar and angular
displacements of reference points relative to the fracture tip. The GDC formulation is similar to that of
the original displacement correlation method with the main difference being that the two reference
points A and A0 are mid-edge nodes of regular quadratic elements, instead of special quarter-point
nodes. The multipliers CI and CII are necessary for correcting the errors induced by the inability of
regular finite elements to characterize the square-root displacement term in the near-tip region. They
were found in [24] to be functions of element type, tip-region mesh configuration, mesh size relative
to crack length, and Poisson’s ratio of the solid. Among these factors, the element type is fixed in

Figure 3. Typical mesh arrangement around a fracture tip. A polar coordinate system is established with its origin
at the tip. The reference points used in Equations (13) and (14) are denoted as small circles, whereas alternative

reference points shown as diamonds can also be used with modified formulations as elaborated in [24].
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our model and the meshing scheme used in all the examples of the present paper consists of two
common tip-region element configurations as shown in Figure 4. The significance of other factors is
investigated in [24] and not repeated here. The correction multipliers for the meshing scenarios used
in the present paper are shown in Figure 4.

3.3.2. Fracturing criterion and fracture propagation direction. When the SIF’s at a tip are known,
the well known fracturing criteria [31, 32] can be directly applied, and these criteria usually also
predicts fracture propagation directions. In our current implementation of the numerical models, a
simplified form of the criteria is adopted on the basis of the constraint that fracture trajectory can
only follow element boundaries. Although it is theoretically possible to allow a fracture to propagate
along an arbitrary direction through element partition or the extended finite element method (XFEM)
[16], such methods will make the implementation of the model unacceptably expensive and
complex, especially because of the coupling of multiple modules and the large number of possible
scenarios of fracture intersections. The adopted meshing scheme shown in Figure 4 allows a fracture
to propagate along seven or three directions (with 45� and 90� increments, respectively) from a tip.
However, at a scale larger than the element size, a fracture can propagate along almost any direction
by combining many element edges. Nevertheless, application of the fracturing criterion to be
adopted needs only to determine along which candidate edge the fracture should propagate.

The simplified fracture criterion is triggered whenK2
I þ K2

II⩾K2
crit and KI> 0, where Kcrit is the critical

stress intensity factor (i.e., toughness) of the matrix rock. The fracture toughness of rocks obtained from
laboratory tests or the effective fracture toughness that takes tip-zone plasticity into consideration [33]
may be used as Kcrit. The second condition (KI> 0) dictates that a fracture should not grow unless it is
completely open. In the absence of pressurized fluid, all fractures in natural geological formations
should be closed and compressive stress is transferred through the contact stress of the two walls of the
fractures. As the fracture is pressurized with fluid, the two walls may slide as the normal contact stress,
which is essentially the effective normal stress, decreases. Therefore, KII may significantly develop
before the fracture is open. However, because of the kinematical constraints posed by the closed
fracture, fracture growth is bounded. This bounded sub-fracturing is homogenized in our model by only
allowing fractures that are completely open to propagate.

Once the mentioned triggering criteria are met, we calculate the normal stress on all the candidate
edges at their mid-edge nodes. The fracture will propagate along the edge with the greatest normal
stress (tension is positive). The stress component resembles the circumferential stress used in some
classical criteria (e.g., [31]), but it is evaluated at a distance of half the edge length instead of at the
tip to be consistent with the approach of separating the entire edge during the time step.

This empirical criterion was found to yield reasonable results, as demonstrated by the numerical
example in Section 6.1, where a hydraulic fracture propagates in a heterogeneous in situ stress field.

Figure 4. Two common tip-region mesh configurations used in this study and the corresponding GDC
correction multipliers.

2284 P. FU, S. M. JOHNSON AND C. R. CARRIGAN

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2278–2300
DOI: 10.1002/nag



3.4. Adaptive remeshing algorithm

When the fracturing criterion determines that a fracture should grow along an identified finite element
edge, this edge is flagged ‘fracture-ready’ and the adaptive remeshing module is invoked. We use the
idealized example shown in Figure 5 to demonstrate how the solid mesh and flow cells are updated.
The current remeshing module only handles the so-called ‘node-split’ in order to create new fracture
faces. More sophisticated scenarios, such as adaptive mesh refinement [34] can be accommodated in
this framework when necessary, but are not described here.

An edge is considered to be external if there is only one element attached to it, whereas there are always
two and only two elements attached to an internal edge. An external edge either represents the free
boundary of the rock mass, or one of the walls along a fracture interface. Each time a fracture-ready
edge is identified, the two nodes attached to this edge are examined. A given node will be split if either
two of the edges connected to this node are fracture-ready or one of the edges connected to this node is
fracture-ready while two of the edges are external. Figure 5(a) illustrates this approach with edges
8 and 13 flagged as fracture-ready. Subsequently, node 5 is split from the first condition and nodes 4
and 9 are split owing to the second condition. Figure 5(b) shows the mesh configuration after the
aforementioned remeshing has taken place. Each node that has been split generated two daughter
nodes. For instance, nodes 12 and 13 are the daughter nodes of node 5. The daughter nodes belong to
the new solid mesh whereas the mother nodes are detached from the solid mesh and attached to the
newly created flow cells (cell 1 and cell 2). Reusing the nodes and edges that have been detached from
the solid mesh ensures that intersecting fractures will result in correct connectivity of the new flow
cells. For instance, edge 5 is flagged at a later step, and subsequently, nodes 12 and 2 are split. The
new flow cell 3 should not be connected to node 12, which has just been split, but to node 5, the
mother node of node 12 as shown in Figure 5(c). During the remeshing process, the mapping between
mother nodes and daughter nodes, and that between mother edges and daughter edges is established
and stored. Such information is used frequently during the simulation because we apply the fluid
pressure from flow cells (which were all previously solid element edges) to their daughter edges as
stress boundary conditions to the solid solver. Meanwhile, the locations of the daughter nodes and
daughter edges are used to update the locations of the flow cells and the aperture sizes.

3.5. Joint model

Joint behaviors involved in a hydraulic fracturing process, such as dilation associated with shear
deformation, reversed and cyclic loading, joint asperity degradation, and their influences on hydraulic
conductivity are very complex, and sophisticated constitutive models are often needed to deal with
these behaviors (e.g., [35–37]). Here, we have implemented a simplified form of the joint model that
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Figure 5. Adaptive remeshing of the finite element model to create new fractures. (a), (b), and (c) represent
three states of the same mesh. The labels for edges are placed at mid-edge, and the mid-edge nodes are not
shown. Because of the unique correspondence between the edges and the mid-edge nodes, mid-edge nodes

are always split when the corresponding edge is split.
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handles the most basic behaviors including the opening, closing, shear deformation and sliding. As
illustrated in Figure 1, the essential function of the joint model in this numerical model is to receive
information regarding rock deformation from the solid solver, calculate stress responses and
permeability changes, and feed this information to the solid and flow solvers.

Figure 6 shows two solid elements on the opposing sides of a fracture. Two edges, denoted as edge p
and edge q, of these elements represent the two opposing walls along the fracture. Edge p is geometrically
characterized by its mid-point xp in the vector form, its length Lp, a unit outer-pointing normal vector np,
and a unit tangential vector tp. Similar variables can be defined for edge q and are not repeated here. These
two edges are the daughter edges of the same edge in the original non-fractured solid mesh, so the lengths
are the same (Lp=Lq) if the small difference in deformation of the two elements in the tangential direction
is ignored. The two edges are assumed to be parallel, that is, np+nq� 0. The normal and tangential
components of the distance between the mid-points of the two edges are

dn ¼ xq � xpð Þ�np (15)

dt ¼ xq � xpð Þ�tp (16)

The rate of change of the previously mentioned quantities, _dn and _dt can be calculated using similar
formulations, but with the location vectors replaced with velocity vectors. Because the relative
displacement of the two sister edges in the tangential direction in hydraulic fracturing simulations is
usually very small compared with the length of the edges, only contacts between sister edges are
evaluated. In other words, it is possible that a very small segment of edge p can interact with a
segment of the edge next to edge q along the fracture face, but this type of interaction is ignored in
the model, and no neighbor-sorting is performed to update nearest neighbors, which both limits and
expedites the calculation.

When dn< 0, the two elements that these two edges attach to penetrate into each other
geometrically. This small virtual penetration is used as a ‘penalty’ term in the finite element solver,
and it represents the state that the two walls along the fracture are in contact. Contact stresses are
generated as a function of the virtual penetration, in a fashion similar to how contact mechanics is
handled in the discrete element method. The absolute value of dn is conveniently equivalent to the
joint closure as used in rock mechanics. The normal contact stress and the tangential contact stress
are calculated using the following equations:

Figure 6. Geometrical characterization of two opposing edges along a fracture. The distances between the
two edges are exaggerated for illustration purposes.
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snð ÞtþΔt ¼ snð Þt þ kn _dnΔt (17)

ttþΔt ¼
tt þ ks _dtΔt if tt þ ks _dtΔt

�� �� < snð ÞtþΔt
�� ��mJ

sign ttð Þ snð ÞtþΔt
�� ��mJ otherwise

(
(18)

where kn and ks are the normal stiffness and shear stiffness of the joint with a dimension of stress/
length. It is well known that both kn and ks are highly nonlinear, and they are strongly correlated.
The responses of the systems simulated by the present model are not sensitive to joint stiffness, so
kn and ks are treated as constants for illustration purposes. mJ is the coefficient of friction of
the walls along the fracture; sign() is a function returning the sign (positive or negative) of the
argument. The Coulomb failure criterion is enforced through Equation (18). Note that although the
omission of shear dilation is appropriate for the scope of the present paper, this mechanism can play
a significant role in other problems. The combination of the contact stress and the fluid pressure
should be applied to the edges along the fracture as stress boundary conditions.

When dn> 0, we term it the mechanical aperture (also termed the storage aperture in the literature)
of the fracture. As mentioned in Section 3.2, it is assumed that the permeability of an open fracture
(dn> 0) obeys the cubic law expressed in Equation (6), that is, wh = dn. When a fracture is closed
(dn< 0), it can still conduct fluid flow because of the partly continuous void space between the two
walls left by the imperfect matching of the asperities on the opposing sides. Under this condition,
the permeability is a function of many factors, including roughness and strength of the joint walls,
the mismatch of the two walls, effective compressive normal stress, and shear dilation. These factors
are not considered in the examples in this paper, and we instead use the following simplified
relationship between the equivalent hydraulic aperture size wh and dn:

wh ¼ dn if dn > wh
0

wh
0 otherwise

�
(19)

where wh
0 is the ‘residual’ equivalent hydraulic aperture size of a closed fracture, and it is assumed to be

constant regardless of the closure and stress of the joint. Note that the ‘equivalent’ aperture size of a closed
fracture is calculated from the permeability of the fracture according to Equation (6). It does not represent
the physical opening of the two walls in contact, but it conveniently has a dimension of length.

4. MODEL VERIFICATION AGAINST THE KGD MODEL

4.1. The KGD model and its compatibility with the proposed numerical model

The KGD hydraulic fracture model was independently developed by Khristianovic and Zhelton [5], and
Geertsma and de Klerk [8]. Because it is based on assumptions that are compatible with those of the
proposed numerical model in this paper, we use the KGD model as the reference for model verification.

The KGDmodel concerns the propagation of a single fracture driven by fluid pumped into the fracture
from the wellbore at a constant flow rate of q0, as shown in Figure 7. It assumes plane-strain deformation,
linearly elastic, homogeneous and isotropic media, and laminar Newtonian flow obeying the cubic law,
which are consistent with the proposed numerical model. The KGD model assumes that the flow rate
everywhere along the fracture is the same as that at the wellbore when calculating pressure loss. This
simplification is not needed in the numerical model, and the effects of this assumption are discussed in
Section 4.2. The propagation of fracture is controlled by the assumption that there is no gap (vacuum)
between the front of the fluid and the fracture tip. Therefore, the KGD model essentially assumes the
fracture propagation is in the fluid viscosity-controlled regime, and the rock toughness is not explicitly
considered. The setup of the numerical model can adopt the same assumption as described in Section
4.2, but a more general case with finite rock toughness will be discussed in Section 4.3.
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Pressurized fluid drives the fracture to propagate along the direction perpendicular to the minimum
compressive principal stress. Closed-form solutions for various quantities, such as fracture length Lfrac
and aperture width at the wellborewh

0 at any given time t are available, such as the set derived by Valko
and Economides [38]:

Lfrac tð Þ ¼ 1:078
E0q30
mf

 !1=6

t2=3 (20)

wh
0 tð Þ ¼ 2:36

mf q
3
0

E’

� �
t1=3 (21)

where E0 = 2G/(1� n) is the plane-strain modulus of elasticity.

4.2. Numerical realization of the KGD model

The simulated domain has dimensions of 100 and 120m in the x and y directions, respectively and is
discretized into 24,000 elements with a mesh pattern shown in Figure 4. The core mesh is then
extended to approximately 1000m in each dimension with progressively larger elements to mitigate
boundary effects. Slip boundary conditions are applied to the edges. At the left side boundary,
where the injection well is located, this applies as a symmetrical condition, consistent with the
assumption in the KGD model. Because of the linear elasticity assumptions of the model, the in situ
stress applied at the boundary will not affect the net pressure results, consistent with the KGD
model. Simulation parameters used in this and subsequent analyses (whenever applicable) described
in the paper are listed in Table I.

To realize the zero-toughness and no-vacuum assumptions of the KGD model, the critical SIF (Kcrit)
in the model is a small finite value (1000 Pam1/2). The fracturing criterion is only checked when the
flow cell connected to the tip is fully filled with fluid, that is, mCi/VCi⩾ rref. When a new flow cell

Figure 7. Geometrical characteristics of a KGD fracture. The well is partly shown. The model implies that
there is another identical fracture on the other side of the well symmetrical to the one shown.

Table I. Parameters of the numerical model for the simulation of the KGD model.

Parameters Value

Rock, shear modulus G 8.3GPa
Rock, Poisson’s ratio n 0.2
Fluid, dynamic viscosity mf 0.001 Pa s
Fluid, bulk modulus Kf 2.2GPa
Flow rate at wellbore q0 1.0, 2.0a, and 4.0 L/s per meter

thickness of reservoir
Residual hydraulic aperture width wh

0 0.02mm

Note:
abaseline case simulation.
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and the associated fracture are created, a fluid lag exists. Meanwhile, the aperture and volume of this
cell continue to grow along with permeability. The fracture will start propagating from the current
tip when the cell is fully filled and the calculated KI is greater than the threshold value.

The growth of the fracture length calculated using the numerical model for the three injection rates
listed in Table I is compared with the corresponding KGD analytical solutions in Figure 8. For the
baseline case (q0 = 2.0 L/s per meter reservoir thickness), three snapshots of aperture width along the
fracture at t= 20, 40, and 80 s are shown in Figure 9. The KGD model assumes the cross section of
the fracture to have an elliptical shape whereas the numerical model calculates the aperture width
based on deformation in the solid phase, and no such assumption is needed. At each time, the
integral of the aperture width along the fracture is the total volume of the fracture, which is the
product of the injection flow rate and the injection duration. Compared with the analytical solution,
the numerical model predicts a slightly shorter fracture length and slightly wider aperture at the
well. Because a number of approximations had to be made in the derivation of the KGD solution,
which can be relaxed in the numerical model (e.g., constant flow rate along the fracture), the small
differences do not necessarily indicate error of the numerical model.

4.3. Toughness-dominated regime

The propagation of fracture in the original KGD model is dominated by viscous flow of the fluid, and a
key assumption is that there is no gap (i.e., vacuum) between the front of fluid and the fracture tip. In
this section, we derive the formulation for hydraulic fracturing in rocks with a high critical stress
intensity factor and compare the numerical model with the analytical solution. We assume in this
regime that aperture of the fracture is wide enough so that pressure loss of the fluid along the fracture is
negligible compared with the fluid pressure at the tip, so the net pressure ΔP is a constant in the
fracture from the wellbore to the fracture tip. The validity of this assumption in the numerical examples
is established later in this section. Two wings of fractures grow simultaneously from the well towards
opposite directions and their combination can be modeled as a planar fracture in an infinite medium
with its center at the wellbore. Assuming at time t the length of each wing is Lfrac(t), the volume of
fluid in one wing is

q0t ¼
ΔPpL2frac

E’
(22)

where E0 is the plane-strain modulus of elasticity defined in Section 4.1, and q0 is the fluid injection rate
into each wing, which is a constant for a simulation. The net pressure ΔP is determined by the condition
that the mode-I stress intensity factor at the tip equals to the rock toughness Kcrit, namely

Figure 8. Comparison between the numerical model and the KGD analytical solution in terms of fracture
growth rate.
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ΔP pLfracð Þ1=2 ¼ Kcrit (23)

Plugging Equation (22) into (23), we can obtain

Lfrac tð Þ ¼ p�1=3
q0E’t

Kcrit

� �2=3

(24)

Under this finite-toughness condition, the length of the fracture is proportional to the injection time
raised to the exponent of 2/3, similar to the original KGD model shown in Equation (20). However, the
viscosity of the fluid does not influence the fracture growth rate, but the rock toughness does. To
numerically model this finite-toughness condition, the same numerical model described in Section 4.2
is adopted with the no-vacuum-at-tip restriction removed. Two cases with rock toughness values of 5.0
and 10.0MPam1/2 are simulated, and the flow rate q0 is assumed to be 2.0 L/s per meter thickness of
reservoir. As shown in Figure 10, the numerical results match the analytical solution reasonably well.

To check the assumption that the pressure loss along the fracture can be ignored in these cases, we
examine the following situation. For the case with Kcrit = 5.0MPam1/2 at t= 75.2 s, the fracture length
Lfrac is approximately 50m. The mean aperture size is 3.0mm (�wh ¼ q0t=Lfrac). For a constant flow rate
of q0 = 2.0 L/s per meter reservoir thickness, through a fracture with a uniform aperture width of
3.0mm, the pressure drop is 44 kPa according to Equations (5) and (6), which is approximately 11%

Figure 9. Comparison between the numerical model and the KGD analytical solution in terms of aperture
distribution along the fracture.

Figure 10. Comparison between the analytical solution and the numerical simulation results for the finite-
toughness scenarios.
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of the net pressure required to create a stress intensity factor of 5.0MPam1/2 at the fracture tip. For the
case with KI-crit = 10.0MPam1/2 at a crack length of 50m, this ratio is 0.7%. Therefore, omission of
pressure loss along the fracture for the rock toughness-dominated scenarios is reasonable for the
parameters tested. Note that the critical SIF values used in these two examples are higher than those of
typical rocks, in order to ensure that the fracture propagation is in the toughness-dominated regime.
Real hydraulic fracture propagation should be somewhere between these viscosity-dominated and
toughness-dominated bounds. Although this is naturally accommodated by the proposed numerical
model, analytical solutions for these intermediate scenarios are not available.

5. MODEL VALIDATION AGAINST LABORATORY TESTS

5.1. Description of the laboratory test

In the previous section, we have verified that the numerical model can appropriately handle the
coupling between the fluid phase and the solid phase during the propagation of a single fracture. We
further validate the model in this section in terms of its ability to simulate the interaction between a
propagating fracture that intersects an existing fracture.

Blanton [39] fabricated synthetic rock blocks using ‘hydrostone’with an existing fracture embedded at
variable angles with respect to the specimen, as illustrated by the horizontal cross-section in Figure 11.
Each rock block was then placed in a triaxial cell for testing. The vertical compressive stress (out-of-
plane in Figure 11; compression is positive) is 20MPa, and the two horizontal principal stress
components sh< sH⩽20MPa. Water was injected into a hole at the center of each specimen to create
a hydraulic fracture propagating in the plane normal to the minor principal stress sh and subsequently
intersecting the existing fracture at an angle of approach θapr. The variables investigated in Blanton’s
study included the magnitudes of sH and sh and the angle of approach θapr. Testing parameters and the
observed interaction modes between the hydraulic fracture and the existing fracture for selected cases
are listed in Table II.

5.2. Mechanisms for different interaction modes

Three modes of interaction including ‘crossing’, ‘arrest’, and ‘opening’ were reported in Blanton’s
study. The mechanisms behind these three modes have been extensively studied using a variety of
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Figure 11. Schematic views of Blanton’s laboratory tests [39] on the interaction between a hydraulic fracture
and an existing fracture. The two horizontal dimensions of each specimen are 30� 30 cm2. (a) Triaxial stress
applied to the specimen and the geometrical configuration of the two fractures; (b) stress along the existing
fracture before the hydraulic fracture intersects it, and (c) additional stress along the existing fracture in-

duced by the opening of the hydraulic fracture and the interaction between the two fractures.
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methods (e.g., [40–43]) in the literature. We briefly review the process of a hydraulic fracture
intersecting an existing fracture to help the determination of the key parameters of the numerical
model and the interpretation of the simulation results.

Before the stress field in the specimen is significantly altered by the creation and propagation of the
hydraulic fracture, the normal and shear stress (s0EF and t0EF , respectively; the subscript ‘EF’ stands for
‘Existing Fracture’ and the superscript ‘0’ indicates that this is the initial condition) as shown in
Figure 11(b) are functions of sH , sh , and θapr and are listed in Table II. When the hydraulic fracture
has intersected the existing fracture at point C1, but has not break the other wall of the fracture at C2,
additional stresses will act on the existing fracture: First, pressurized fluid will start to flow into the
existing fracture. If we assume the fluid pressure at a given moment and location along the existing
fracture is P(t) and the effective normal stress (i.e., contact normal stress between the two walls along
the fracture) at the same time and location is sEF(t), the following relationship holds

sEF tð Þ þ P tð Þ � s0EF

which is approximate because the stress field might be perturbed near the intersection. The effective
normal stress along the existing fracture decreases as the fluid pressure in it increases. Because solid
block I (enclosed by A1-C1A-B1) and block II (A2-C1B-B2) tend to move away from each other,
especially when fluid pressure P is significantly higher than sh, this motion will create additional shear
stress tOP along the fracture as shown in Figure 11(c). Note that the subscript ‘OP’ stands for ‘opening’.
This shear stress increment has opposite directions at the two sides of point C2, and is the primary
driving mechanism of the stress intensity factor at C2.

The role of hydraulic pressure in this process is twofold. To generate an SIF that is great enough to
break the fracture wall at point C2 and allow the hydraulic fracture to cross the existing fracture, high
fluid pressure is needed to create additional shear stress tOP along the existing fracture by pushing
blocks I and II apart. However, a higher fluid pressure will reduce the effective normal stress on the
existing fracture, and the two blocks might be able to slide along the wall, preventing the creations of a
high SIF. The relative significance of these mechanisms depends on the existing normal and shear
stresses on the fracture before fluid flow into the existing fracture. Next, we consider an idealized
scenario. Assume when the hydraulic fracture breaks one of the fracture walls at point C1 and intersects
the existing fracture, the fluid pressure P=sh. Note that P⩾sh is the necessary condition (but no
sufficient condition) for the hydraulic fracture to propagate. Because the hydraulic pressure merely
balances sh, blocks I and II do not have a significant tendency to move apart from the fracture and
therefore tOP� 0. If we assume no sliding takes place along the existing fracture under this condition,
the mobilized coefficient of friction is t0EF= s0EF � P

� �
¼ t0EF= s0EF � sh

� �
¼ tan 90∘ � θapr

� �
with the

derivation process omitted here and the value of mobilized coefficient of friction for all the scenarios

Table II. Different scenarios tested in Blanton (1982) [39], observed interaction modes, and numerical
simulation results.

Case IDa θapr (�)
Principal stress (MPa) Interaction

mode

Stress on ex. frac.
before pumping t0EF

s0EF�sh

Max. SIF at
C2 (MPam1/2)

sH sh s0EF t0EF

CT-20 90 14.0 5.0 Crossing 14.0 0.0 0.00 0.69
CT-21 60 14.0 5.0 Arrest 11.7 3.9 0.58 0.36
CT-8 60 20.0 5.0 Crossing 16.2 6.5 0.58 0.59
CT-4 60 12.0 10.0 Opening 11.5 0.9 0.58 0.13
CT-22 45 10.0 5.0 Opening 7.5 2.5 1.00 Negligible
CT-14 45 14.0 5.0 Arrest 9.5 4.5 1.00 Negligible
CT-13 45 16.0 5.0 Arrest 10.5 5.5 1.00 Negligible
CT-12 45 18.0 5.0 Arrest 11.5 6.5 1.00 Negligible
CT-11 45 20.0 5.0 Arrest 12.5 7.5 1.00 Negligible

Note:
aCase ID here is the ‘Test #’ in Blanton’s original paper.
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listed in Table II. Under this condition, configurations with smaller approaching angles have a stronger
tendency to slide along the existing fracture at the moment the hydraulic fracture intersects the existing
fracture. If the fluid pressure near the intersection point increases beyond sh, then the sliding tendency
is enhanced, because of the following:(i) the effective normal stress is further reduced; and (ii) the shear
stress is increased at least on one side of point C2.

5.3. Numerical simulation results

The nine scenarios in Table II are simulated using the numerical model. The original paper [39] did not
provide information on the fluid pressure for each case. The actual pressure should be dependent on a
number of factors, including the minor principal stress sh, dynamic response of the pumping system,
and the compliance of the hydraulic system. A clue that helps estimate the pressure at the injection
hole is the difference between the ‘opening’ mode and the ‘arrest’ mode. Opening means that the
hydraulic fracture is first arrested by the existing fracture and the pumping pressure is higher than
normal stress (~ s0EF ) induced by the boundary condition. We found that a fluid pressure of
sh + 3.0MPa is consistent with the observations in the laboratory testing results, and this pressure is
used as the flow boundary condition in the simulations. The toughness (i.e., critical stress intensity
factor) of the hydrostone is unknown. To quantify the effects of the external variables on the ability
or potential of the hydraulic fracture to cross the existing fracture, we use a small toughness value
(10 kPam1/2) on the left-hand-side of the existing fracture, so that the hydraulic fracture can
propagate towards the existing fracture. We do not allow the mesh to fracture to the right of the
existing fracture in the simulation. Instead, we track the mode-I stress intensity factor KI at point C2

and the maximum value achieved by each specimen is presented in Table II. Other numerical
simulation parameters are presented in Table III.

Figure 12 shows the evolution of KI at point C2 and the fluid pressure near C2 for two cases, CT-
8 and CT-21, with their only difference being sH. After the fracture wall at C1 breaks, KI at C1

increases as the pressure increases, due to the associated increase of tOP. KI suddenly drops when
the pressure is high enough to allow sliding to occur along the existing fracture. The case with a
higher sH value has a stronger resistance to sliding than the other case, and therefore KI is able to
continue to grow to a higher peak value before the fluid pressure is high enough to induce sliding.
As mentioned in Section 5.3 and shown in Table II, for the specimens with θapr = 45º, the mobilized
coefficient of friction at C2 needs to be higher than 1.0 to sustain significant tOP, but the coefficient
of friction used in the simulation is 0.7. Therefore, KI values significantly higher than zero cannot
develop in those cases.

On the basis of the simulation results, we find that if the toughness of the hydrostone is greater than
0.36 but smaller than 0.59MPam1/2, the numerical model can exactly reproduce the observed
phenomena in Blanton’s laboratory tests. Although the toughness of this particular material used
cannot be precisely determined, the study in this section demonstrates that the proposed explicit
coupling simulation strategy and the numerical model can adequately reflect the physical
mechanisms governing the interaction between two intersecting fractures. A significant advantage of

Table III. Parameters of the numerical model for the simulation of the Blanton experiments.

Parameters Value

Rock, shear modulus G 8.3GPa
Rock, Poisson’s ratio n 0.2
Fluid, dynamic viscosity mf 0.001 Pa s
Fluid, bulk modulus Kf 2.2GPa
Fluid pressure at the injection hole sh+ 3.0MPa
Joint, residual hydraulic aperture width wh

0 0.005mm
Joint, coefficient of friction mJ 0.7
Joint, normal stiffness kn 500GPa/m
Joint, shear stiffness ks 1.0GPa/m
Average element dimension ~1 cm
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this method compared with other methods used for this problem is that the temporal evolution of
the states of each phase can be explicitly resolved and the effects of each variable in this physical
process can be studied independently.

6. DEMONSTRATION OF SIMULATION CAPABILITY

6.1. Fracture propagation in heterogeneous field

The proposed numerical model only allows fracture to initiate and propagate along interfaces between
neighboring solid elements, namely edges in the mesh, which raises mesh dependency concerns. In this
section, we examine this effect through a numerical example where a hydraulic fracture propagates in a
solid medium with a heterogeneous stress field.

The boundary conditions applied to a 200� 100m2 solid medium are shown in Figure 13(a). Slip
boundaries are applied at the left and bottom boundaries. The stress applied at the other two
boundaries is denoted in the figure, and the resultant nodal stress tensors are visualized as ellipses.
The major principal stress is horizontal at the left side of the medium, and it gradually becomes
vertical at the right side. Fluid is pumped into the domain through a perforation shown in the figure.
Because hydraulic fracture tends to grow in the direction perpendicular to the minor principal stress,
it is expected that it will first propagate horizontally and then gradually turn vertical.

The simulation uses parameters similar to those used in Section 4, and the fracture path obtained and
the stress tensor distribution at the end of the simulation are shown in Figure 13(b). Although the
simulated hydraulic fracture abruptly switches trajectory by 45� due to the mesh constraints, the
model is able to capture the overall propagation path of the fracture, which is dictated by the applied
boundary conditions. Therefore, the mesh dependency of fracture path appears to be not a serious
issue at a scale that is significantly larger than the element size. The fracturing criterion is ‘smart’
enough to find the optimum combination of element edges to form a continuous fracture path that is
consistent with the mechanical conditions applied in the model.

6.2. Study of responses of a reservoir with isotropically oriented natural fractures

In this section, we use the proposed numerical model to investigate the stimulation of a virtual reservoir
with the presence of largely isolated natural fractures with uniformly distributed orientations. The
variables to be studied include the orientation of the far-field principal stress axes and the degree
of stress anisotropy. The reservoir setting is hypothetical, and the primary objective of these
simulations is to study whether the numerical simulation results can reasonably respond to the variation
of external variables.
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6.2.1. Natural fractures and meshing strategy. The simulation domain interior to the boundary mesh is
100m long in both dimensions (from 0 to 100m in the x/horizontal direction and from�50 to 50m in the
y/vertical direction), and the triangle elements have edges approximately 1m long. The mesh is based on
the meshing scheme shown in Figure 4, but a small and random perturbation is imposed on the location of
each node to introduce some randomness to the mesh as shown in Figure 14(c). Progressively larger
element sizes are employed to extend the simulation domain to 1000m in each dimension, and the far-
field stress conditions are applied at the boundary of the extended mesh. A preexisting natural fracture
system is randomly generated and mapped onto the edges of solid elements within the core simulation
domain as shown in Figure 14 (a). The fractures are largely isolated with lengths ranging from 6 to
18m with a mean of 11m. The orientations of these fractures are uniformly distributed between 0 and
180� rotating from the x direction. The injection well for hydraulic stimulation is placed at x=0 and
y=0. At the bottom, top, and right boundaries of the core simulation domain, a zero-pressure boundary
condition is specified in the flow solver as shown in Figure 14 (b), so these three boundaries are treated
as fluid ‘sinks’. Simulation parameters used in this suite of examples are similar to those used in
Sections 4 and 5 and are thus not repeated here.

6.2.2. The effects of principal stress orientation. Three simulations are performed in the study of the
effects of principal stress orientation. In the baseline case (A-1), the far-field stress is sxx= 15MPa,
syy= 10MPa, and sxy = 0 (compressive stress is positive in this example). Fluid is pumped into the
system through the injection well denoted in Figure 14(b) at a constant pressure of 14MPa. The

Figure 13. Hydraulic fracture propagation in a medium with a heterogeneous stress distribution. (a) The
boundary conditions and stress tensor distribution before hydraulic fracturing. (b) The path of the hydraulic
fracture and the stress tensor at the end of the simulation. The 2D stress tensor at each note is represented by
an ellipse. The lengths of the two axes of an ellipse are proportional to the two principal stress components at
this point, and the orientations of the two ellipse axes coincide with the orientations of the two principal

stress components.
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simulation result of the stimulated fracture system for the baseline case at the end of the stimulation
are shown in Figure 15(a), where the fractures (including both natural and created fractures) that
are engaged (i.e., connected to the injection well and pressurized by the fluid) in the stimulation are
shown in red color, and the unaffected fractures are in gray. Note that the aperture widths are
magnified by 20 times to enable clear visualization. The distribution of stress component syy at the
end of the stimulation is shown in Figure 15(b) where the additional compressive stress created by
the pressurized fractures along the horizontal direction and the tensile stress at fracture tips in the
pumping front are visible. The simulation results for the two additions cases, A-2 and A-3, where
the principal stresses have rotated counterclockwise and clockwise, respectively, by 30� are shown
in Figure 15(c) and (d).

It is well known that hydraulic fractures tend to propagate along the plane of the least compressive
(far-field) stress in homogeneous media. In all the three cases, the general orientations of the engaged
fracture systems are consistent with the predicted directions based on the far-field principal stress
orientation. The heterogeneity in the rock body because of the presence of natural fractures
inevitably affects the paths along which hydraulic fractures propagate, making them deviate from
the ideally predicted paths. These effects appear to be local, with a minimal influence on the
general trends of the fractures. Moreover, these effects, embodied by the interactions between
fractures are well reflected in the numerical model. This study also confirms the observations made
in Section 6.1 regarding the minimal mesh dependency of fracture paths in the proposed numerical
method. In the current meshing scheme, the inter-element interfaces, namely potential fracture
paths are generally along directions 0�, 45�, 90�, and 135� from the x-axis with some randomness
introduced by the mesh perturbation. However, this does not prevent the fractures from propagating
along directions �30�.

6.2.3. The effects of stress anisotropy. In this study, the baseline case B-1 is the same as the baseline
case A-1 in the previous study. The additional scenarios have the same far-field stress in the y-direction
(syy= 10MPa) as the baseline case, but smaller compressive stresses sxx= 12 and 10MPa for cases B-2
and B-3, respectively. Note that the far-field stress for case B-3 is isotropic. The pumping pressure for
all the cases remains 14MPa. The simulation results are shown in Figure 16 in a fashion similar to that
of Figure 15, with fractures engaged in the stimulation highlighted. The result for B-1 is the same as
that for A-1, and is thus not repeated in Figure 16.

The stimulated fracture network for case B-2 is similar to that of the baseline case, with a slightly
more diffuse pattern of fracture growth at the far side from the injection well, presumably because
the reduced compressive stress in the x-direction provides more flexibility in the choice of viable
propagation paths by the hydraulic fracture. In case B-3, the isotropic far-field in situ stress does not

Figure 14. Preexisting natural fractures and the meshing strategy. (a) The randomly generated natural
fractures; (b) the core simulation domain and the extended domain; and (c) perturbed mesh to introduce

randomness to the fracture path.
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impose a preferential fracture propagation direction. Four major branches of fractures have developed
as the results of the stimulation along largely random directions, but these four branches tend to
propagate away from each other. This is because if two parallel fractures are close to each other,
the compressive stress in the rock matrix induced by the fluid pressure tends to impede the
development of tensile zones at the fracture tips, retarding further propagation. One may argue that
these four branches appear to propagate generally along the element edge directions. This
phenomenon indicates that the mesh configuration plays a secondary role in determining the
fracture propagation direction. Although in situ stress and existing fractures are more significant
factors, as revealed by other examples, the subtle role of mesh configuration may become visible
when the effects of these primary factors vanish under certain conditions (e.g., isotropic stress field
and isotropic fracture orientation).

Figure 15. Stimulated fracture networks with different far-field principal stress orientations. Preexisting
natural fractures and newly created fractures that are engaged by the stimulation are shown in red color,
whereas unaffected natural fractures are in gray. The orientations of the principal stresses are schematically
shown in each figure. (a) Baseline case A-1 where the major principal stress aligns with the x-axis; (b)
distribution of syy in case A-1 at the end of stimulation, with the blue end of the color spectrum indicating
stress that is more compressive and the red end being more tensile or less compressive; (c) case A-2, the
principal stress axes have rotated counterclockwise by 30� from the baseline; and (d) case A-3, the principal

stress axes have rotated clockwise by 30� from the baseline.
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7. CONCLUDING REMARKS

In this paper, we present an explicit coupling simulation strategy for hydraulic fracturing in arbitrary
natural fracture systems. In the proposed method, each of the physical processes involved in hydraulic
fracturing is modeled by a separate module of the simulator and the interactions between
these processes are embodied by the data/information sharing between these modules. Because
multiple processes of rather different natures are involved, and they influence each other in
many different ways, this explicit strategy provides a flexible simulation framework for complex
hydraulic fracturing phenomena. Because the operations of these modules are sufficiently
decoupled in this explicit coupling methodology, upgrading an individual module with more
realistic (and inevitably more complex) models can be done without significantly affecting other
modules. Therefore, although only the baseline simulation capability using relatively simple models
is described in this paper, the presented simulation framework will remain unchanged if more
complex problems are to be simulated.

The verification and validation of the numerical model focus on relatively simple but well-
quantifiable phenomena in rock-fracture-fluid systems. Quantitative data, at either the laboratory or
field scale are not available for the interaction between hydraulic fractures and existing natural
fracture networks. However, because the interactions between fractures in a complex fracture
network can be decomposed into the propagation of individual fractures and the interactions within
individual pairs of fractures, the verification and validation in this paper provide a reasonable
physical and mechanics base, on which the credibility of the proposed model is built.

The numerical model using this explicit coupling strategy is known to be computationally
expensive. The main reason is that the physical phenomena being simulated are not only complex,
but also ill-conditioned. The simulation domain is often hundreds of meters in each direction
whereas typical aperture width is a small fraction of a millimeter. A deformation that is considered
small ‘noise’ in the solid solver may induce dramatic (by orders of magnitudes) oscillation of fluid
pressure in the flow solver. Because the model has to essentially resolve multiple dynamic physical
processes with characteristic length-scales across several orders of magnitude, the time steps used in
both the solid and flow solvers are necessarily very small. As an example, each of the simulations in
Section 6.2 costs hundreds of CPU-hours on currently mainstream computers. A number of modeling
and computational technologies, including more efficient solvers, more intelligent time-stepping, hybrid
solvers, and massively parallelized processing are currently being developed and implemented to
enable this model to be used more effectively.

Figure 16. Stimulated fracture networks under different degrees of stress anisotropy, but the same principal
stress axis orientation. The far-field stress state is denoted in each figure. Note that the baseline case is shown

in Figure 15(a).
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The initial development of the proposed numerical method was on the platform of Livermore Distinct
Element Code (LDEC). LDEC is a massively parallel multi-physics simulator developed by the
Computational Geosciences Group at the Lawrence Livermore National Laboratory to simulate the
response of jointed geologic media to dynamic loading. Additional capabilities, including combined
FEM-DEM analysis, fracture mechanics, and explicit solid–fluid coupling have been implemented in
LDEC in the continued development over the past decade [23, 44–46]. However, the methodology
described in this paper is portable and can be implemented in any appropriate numerical platform.
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ABSTRACT 

This paper documents our effort to use a fully 

coupled hydro-geomechanical numerical test bed to 

study using low hydraulic pressure to stimulate 

geothermal reservoirs with existing fracture network. 

In this low pressure stimulation strategy, fluid 

pressure is lower than the minimum in situ 

compressive stress, so the fractures are not 

completely open but permeability improvement can 

be achieved through shear dilation. The potential 

advantage of low pressure stimulation compared with 

high pressure stimulation is that a large fracture 

network instead of a single primary fracture can be 

stimulated. We found that in this low pressure 

regime, the coupling between the fluid phase and the 

rock solid phase becomes very simple, and the 

numerical model can achieve a low computational 

cost. Using this modified model, we study the 

behavior of a single fracture and a random fracture 

network. 

INTRODUCTION 

Geological formations in rocks with low initial 

permeability can be hydraulically stimulated to create 

enhanced (or engineered) geothermal reservoirs with 

enhanced permeability and thereby improved heat 

production efficiency (MIT study, 2006). The 

conceptual model for hydraulic stimulation that is 

most commonly referred to depicts the following 

process. When fluid pressure exceeds the minimum 

principal stress in the rock formation, new hydraulic 

fractures initiate and propagate along the plane that is 

perpendicular to the minimum principal stress 

direction. These new hydraulic fractures will intersect 

existing natural fractures in the formation and form a 

interconnected fracture network, through which fluid 

in the production phase can flow from the injection 

well to the production well(s) and bring heat from the 

hot rocks covered by this network.  

 

A concern over the process described in this 

conceptual model is that once a hydraulic fracture 

(termed primary fracture herein) is opened, the 

conductivity along this fracture from the injection 

point to the fracture front is much higher than the 

neighboring fractures that are still closed. 

Meanwhile, the high fluid pressure in this open 

fracture creates a “stress shadow” around this 

fracture, which increases the rock matrix compressive 

stress experienced by neighbor fractures. The direct 

consequence of these two effects is that this open 

fracture will continue to grow at a relatively high 

rate, thereby further strengthening these effects, 

whereas the neighbor closed fractures may never be 

able to open and subsequently compete with the 

primary fracture. This is true regardless whether the 

primary fracture is a newly created hydraulic fracture 

or an existing fracture that happens to be oriented 

normal to the minimum principal stress. In this 

scenario, only one fracture (the primary fracture) can 

be stimulated. Even though it is possible to obtain 

high permeability between the injection well and the 

production well through this primary fracture, heat in 

a small volume in the reservoir around this fracture 

can be harvested, which is highly undesired for 

enhanced geothermal system (EGS) stimulation. It is 

possible to stimulate multiple fractures and create 

interconnected fracture network using technologies 

such as horizontal drilling with staged fracking, but 

such technologies are expensive and more applicable 

to shale gas production than to EGS. 

 

An alternative stimulation strategy is to stimulate the 

reservoir at a fluid pressure lower than the minimum 

principal stress in the rock matrix. No new fractures 

will be created and none of the existing fractures will 

be completely open. In this scenario, instead of 

stimulate a single fracture, the fracture network 

which must already be interconnected prior to the 

stimulation will be stimulated by “hydro-shearing” 

(Willis-Richards et al., 1996). This paper investigates 

the mechanisms of low pressure hydraulic 



stimulation using a fully coupled hydro-

geomechanical numerical test bed developed at the 

Lawrence Livermore National Laboratory. The 

numerical algorithms in this numerical test bed, 

which originally focuses on high-pressure hydraulic 

fracturing, have been documented elsewhere 

(Johnson and Morris, 2009; Fu et al., 2011). In this 

paper, we describe the modifications to the original 

algorithms that enable high-efficiency simulation of 

low pressure stimulation in this paper, as well as 

various numerical examples on low pressure 

stimulation.  

STRESS SHADOWING CONSIDERATION 

First, we quantitatively evaluate the evolution of 

stress shadowing, namely the increase of rock matrix 

stress as fluid pressure in a fracture increases. 

Consider an infinite array of parallel fractures with 

infinite length as a highly idealized scenario that 

enables a closed-form solution to be obtained, as 

illustrated in Figure 1. The distance between any two 

neighboring fractures is H. Initially the fluid pressure 

in these fractures is PF=0 and the rock matrix stress 

normal to the fractures is σMi.  As the fractures are 

simultaneously pressurized with fluid, they will begin 

to dilate and the rock matrix stress σM will increase 

accordingly. The effective normal stress along these 

fractures 
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Figure 1: Two adjacent fractures in an infinite 

array of parallel fractures. 

 

Note that σM is not a constant, but a function of σMi 

and PF. Assume under the initial condition (effective 

normal stress being σMi) the mechanical aperture 

width is wi; at arbitrary effective joint stress σ'J the 

mechanical aperture width becomes w. We define the 

secant unloading joint stiffness to be 
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The normal stiffness of a joint kn is conventionally 

defined using the zero-normal stress state as the 

reference state, whereas we use the zero-fluid 

pressure state as the reference. The compression 

experienced by the rock body between two 

neighboring fractures due to a matrix stress increase 

from σMi to σM should be the same as the joint dilation 

due to the corresponding effective stress change from 

σMi to σ'J, namely 
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where E' is the confined stiffness of the rock matrix 

as 
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with E and  being the Young’s modulus and 

Poisson’s ratio of the rock, respectively. We 

introduce a length scale 

nn kEh /'  (5) 

so that the closure of the joint between the reference 

stress state and the current effective stress state is the 

same as the compression of a layer of virtual rock 

mass of thickness nk  experiencing the same stress 

change. 

 

By plugging equations (1) and (2) into equation (3), 

we can obtain the increment of rock matrix stress 

ΔσM=σM-σMi as 
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which indicates that the fracture will be completely 

open if the fluid pressure is higher than a threshold 

value of )/1( HhnMi  . When the fracture is still 

partially closed, the rock matrix stress increment is 

only a small portion of the fluid pressure increment.  

A survey of rock mechanics literature (e.g. Bandis et 

al., 1983; Barton et al., 1985; Cook, 1992) found that 

nh  is generally within the range between tens to 

hundreds of millimeters for interlocked rocks 

compressed with a stress level typical of hydraulic 

stimulation applications. If the fracture spacing is in 

the range of a few meters to tens of meters, then the 

rock matrix stress increment is a relatively small 

percentage of the fluid pressure increment. Therefore, 

the stress shadowing effects for partially closed 

fractures can generally be ignored. We term this 

scenario “joint stiffness-dominated” regime for 

fracture flow. 

 

On the other hand, however, as the fluid pressure 

exceeds the threshold value and the fractures are 

completely open, the opening of the fracture will not 

be governed by joint stiffness, but by the deformation 



in the rock matrix instead. Under this condition, the 

stress shadowing effects mentioned in the first 

section dictates that a primary fracture will emerge 

and suppress the pressure propagation in neighbor 

fractures. 

 

COUPLING JOINT MODEL WITH FLOW 

SOLVER 

 

In order to investigate fluid pressure propagation in 

the joint stiffness-dominated regime in an arbitrary 

fracture network, we use the numerical model for 

hydraulic fracturing developed at the Lawrence 

Livermore National Laboratory (LLNL). This fully 

coupled hydro-geomechanical model has been 

described elsewhere (Fu et al., 2011) and will not be 

repeated here. However, the original model was 

formulated for the scenarios where the fractures are 

completely open. To simulate the cases with partially 

closed fractures, some modifications are necessary. 

The weak stress shadowing effect allows us to 

directly incorporate joint closure models into the 

finite volume flow solver. 

 

Fractures are discretized into interconnected flow 

cells in the flow solver. The permeability of each 

flow cell is a function of the hydraulic aperture width 

and the fluid storage volume of a cell is related to the 

mechanical aperture size. It is well known that the 

hydraulic aperture width is highly correlated with the 

mechanical aperture size as effective stress evolves, 

with the former generally smaller than the latter 

(Cook, 1992). However, their difference is ignored in 

this preliminary study. In each time step of solving 

the network flow, the fluid mass into and out of each 

flow cell is calculated and subsequently, the fluid 

mass in each cell is updated. Fluid pressure in each 

cell is calculated using the following equation-of-

state 
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where Kf is the bulk modulus of the fluid; ρref is the 

reference density of this fluid, namely the density at 

zero or the datum pressure; Lc is the length (area in 

3D) of the fluid cell and w is the aperture width, so 

Lcw is the fluid storage volume of the cell; mc is the 

fluid mass in this cell; Pvap is the temperature-

dependent vapor pressure of this fluid which can be 

considered to be zero for the purpose of hydraulic 

stimulation modeling as the pumping pressure is 

many orders of magnitude higher than the vapor 

pressure. In the original model, the aperture width is 

calculated based on the deformation of the rock mass 

through a finite element solver. In the current study, 

instead we adopt the well known closure model by 

Bandis et al. (1983), which relates the aperture width 

w and joint effective normal stress as 
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where wmax is the aperture width at the zero-effective 

stress state, which is essentially the maximum joint 

closure in the original joint model; a and b are two 

material-specific constant. We plug equations (7) and 

(8) into equation (1) and obtain 
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which can be solved as 
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where A=KFrefLC/mC and B=σM-KF+Awmax are two 

constants to simplify the expression of the equations. 

With this equation, we can directly calculate the 

aperture width at each time step from the updated 

fluid mass and then obtain the fluid pressure using 

equation (7). The finite element solid solver is not 

required for joint stiffness-dominated fluid flow. 

 

FLOW IN A SINGLE FRACTURE 

 

We investigate fluid flow in a single fracture in this 

section. Because the strong coupling between fluid 

pressure, aperture volume, and aperture permeability, 

closed-form solutions cannot be derived.  

 

A 100 meter long straight fracture is considered and 

it is discretized into 1,000 flow cells with LC=0.1 m. 

In the initial condition where no fluid exists in the 

fracture, the normal stress along the fracture σn=10 

and we ignore the total normal stress change due to 

pressurization of the fracture. In this state, the 

aperture width wi=0.01 mm whereas wmax=0.1 mm 

corresponding to the zero-effective stress state. The 

closing behavior of the fracture is anchored by these 

two states and we can back-calculate the two 

constants in the joint model as 
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The dynamic viscosity, bulk modulus (KF), and 

reference density (ref) of the fluid are 0.001 Pas, 2.2 

GPa, and 1,000 kg/m
3
, respectively. All the above 

parameters remain the same for all the numerical 

examples in this paper unless stated otherwise.  

 

In the baseline scenario, we start pumping fluid with 

pressure PF0=10 MPa into the fracture at time t=0. 

This is also the highest fluid pressure allowed by the 

joint stiffness-dominated regime. The length of the 

fracture that is pressurized by fluid LF as a function 

of t is shown in Figure 2(a). A regression analysis 

finds that LF is linearly proportion to the square root 

of t, with the regression equation and a perfect R
2
 

value shown in the figure. For an ideal case where the 

aperture width is a constant regardless of the fluid 

pressure, a closed-form solution exist between LF and 

t as 
2/1

0

6 
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which also indicates that LF is a linear function of the 

square root of t. In Figure 2(a), two scenarios with 

pressure-independent aperture widths 0.1 mm and 

0.01 mm are plotted. Since these two aperture widths 

are the upper and lower bounds of the aperture width 

in the baseline case, it is not surprising to see the 

propagation speed of the baseline case is somewhere 

between these two ideal cases. 

 
(a) 

 
(b) 

Figure 2: Numerical simulation results for the 

baseline single fracture. (a). 

 

 

The flow rate q at the pumping end of the fracture 

decreases as the fluid front propagates, as shown in 

Figure 2(b). This phenomenon has an important 

implication for the stimulation of a fracture network. 

It indicates that as the stimulation progresses, it will 

be more and more difficult to pump fluid into a single 

fracture. The flow tends to find alternative route, 

thereby stimulating other fractures in the network. On 

the other hand, if an open primary fracture has 

developed, the flow rate into this fracture increases as 

this fracture grows if the pump pressure remains 

constant. This single fracture will consume most of 

the fluid volume and make the stimulation of other 

fractures more difficult. 

 

Two more simulations for the same single fracture 

but with lower pumping pressures, 5 MPa and 2 MPa, 

were performed and the results are shown in Figure 

3. The effect of pumping pressure on the fluid front 

propagation rate is very significant. For all the three 

pumping pressures, LF is always a linear function of 

the square root of time. We also implemented some 

other forms of the relationship between the effective 

normal stress and the aperture width in addition to the 

Bandis-Barton model, and found that this square root 

grow rate relationship is always valid. 

 

 
 Figure 3: The effects of pumping pressure P0 on the 

growth rate of LF. 

 

SELF-PROPPING THROUGH SHEAR 

DILATION  

It is believed that a fracture network can be 

stimulated by the mechanism of shear dilation under 

the following conditions: 1) There exists significant 

shear stress long the fractures; and 2) the fluid 

pressure is high enough to induce shear slipping of 

the fractures as a result of the reduced effective 

stress. Predicting the amount of shear dilation is a 

challenging task, primarily due to the lack of 

experiment data that enable characterization of joint 

behaviors along the complex stress paths associated 

with hydraulic stimulation and the subsequent 

drawdown. The following simple phenomenological 
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empirical model is used in this study to represent the 

most important shear dilation behaviors associated 

with low pressure stimulation. 

 

We introduce a variable, termed the stimulation 

factor S to quantify the extent to which a fracture has 

been stimulated through shear dilation. The aperture 

width is a function of not only the compressive 

effective stress σ', but also this stimulation factor S.  

If we assume the effects of σ' and those of S can be 

decoupled, S becomes a multiplier of the original 

joint model as 

)'(),'(  SwSww   (13) 

In the unstimulated state, S=S0=1.We denote the three 

parameters in the joint model in this state as wmax0, a0 

and b0, and the evolution of these parameters with S 

is as Sww maxmax 0  and Saa 0 while b is a constant 

as b=b0. We define the “excessive” shear stress along 

a fracture to be τ'=τ0-σ'μ, where τ0 is the shear stress 

along the fracture in the initial state without hydraulic 

pressure and μ is coefficient of friction of the 

fracture. The stimulation factor S is assumed to be 

related to the greatest excessive shear stress τ'max ever 

achieved by the fracture 
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where Smax is the upper limit of S and S reaches Smax 

at excessive shear stress τ's.  The above formulation 

dictates that an increase of the excessive shear stress 

can induce increase of S, but a decrease of τ' has no 

effect on S. In other words, the stimulation effects 

induced by the increase of fluid pressure will not be 

reversed when the pressure decreases after the 

stimulation. However, the aperture size is still a 

function of the effective stress as dictated by equation 

(8). The main effect of stimulation by shear dilation 

is to change the values of the constants in equation 

(8). 

 

NUMERICAL EXAMPLE: STIMULATION OF 

A NATURAL FRACTURE NETWORK  

 

In this section, we exercise the numerical model on a 

virtual reservoir. As shown in Figure 4, the 

simulation domain is 320 m wide (x from -160 m to 

160 m) and 240 m tall (y from 0 to 240 m). There are 

two sets of joints (existing natural fractures) in this 

reservoir. The horizontal set has orientation angles 

with a uniform distribution between 10° and 30° 

where as the vertical set has orientation angles 

between 80° and 100°. Note that this 2D simulation 

domain should be considered as a plan view of the 

reservoir, so the term “vertical” refers to the direction 

within the image, not the vertical direction in a 3D 

space. All the fractures have lengths between 20 m 

and 60 m and the total length of fractures in the two 

sets are 8,300 m and 8,700 m respectively. The 

injection well is located near the middle point of the 

lower boundary of the domain as shown in Figure 4, 

so the simulation is on a half of the reservoir. The 

location of the production well is shown in Figure 4. 

The far field in situ stress applied is σxx=10 MPa, 

σyy=14 MPa, and σxy=0. Since the fractures usually do 

not exactly align with the coordinate system, shear 

stress dependent on the orientation angle exists along 

these fractures.  Joint model parameters used are 

shown in Table 1 and parameters for the fluid phase 

are the same as the numerical examples for single 

fractures.. 

 

 Table 1: Model parameters used in this study. 

Parameter Value 

wmax0 0.2 mm 

wi0 0.02 mm 

t's 3 MPa 

Smax 3.0 

μ 0.7 

 

 

 
Figure 4: The effects of pumping pressure P0 on the 

growth rate of LF. 

 

 

The injection pressure at the injection well is 10 

MPa, the same as the minimal principal stress. The 

portions of the fracture network that is pressurized 

(with non-zero fluid fracture) at 20,000 seconds (5.6 

hours) and 100,000 seconds (28 hours) after the 

injection has started are shown in Figure 5. 

Injection well 

Production well 



 

 
Figure 5: Pressurized fracture network 20,000 and 

100,000 seconds after stimulation. 

 

We simulate four scenarios (A to D) that share the 

same stimulation process in the first 100,000 seconds 

as described above but with different subsequent 

operations after 100,000 seconds. For cases A 

through C, we start pumping into the production well 

with 10 MPa fluid pressure from 100,000 seconds to 

125,000 seconds.  The objective is to stimulate the 

fractures near the production well. The difference 

between these three cases is the back pressure we use 

in the production state, being 0, 2 MPa, and 4 MPa 

for cases A, B, and C, respectively. A higher back 

pressure can increase the aperture width and 

permeability in the near-well region but on the other 

hand, it also decreases the pressure gradient from the 

injection well and the production well. In case D, we 

do not stimulate the region around the production 

well but directly apply 4 MPa of back pressure at 

100,000 seconds. 

 

The flow rates at the two wells for case A are shown 

in Figure 6. Negative flow rate means flow from the 

well into the reservoir and positive value means flow 

from the reservoir to the well. Because this is a 2D 

model, the flow rate is for unit-thickness reservoir. 

From the beginning of the stimulation (t=0) to 

100,000 seconds, the absolute flow rate at the 

injection well continues to decreases, similar to what 

the single fracture model has shown. The fluid front 

reaches the production well at approximately 50,000 

seconds, and fluid starts to flow out from that well, 

which is an artifact of the zero-pressure boundary 

condition given at the well. Fluid flow into the 

production well between t=100,000 and t=125,000 

seconds during the stimulation through the 

production well. Once we lower the pressure to the 

back pressure (0 for case A), fluid starts to flow back 

into the well. The flow rate in the beginning is high 

due to the high pressure that has built up during the 

production well stimulation, and it soon reaches a 

relatively steady level when most of the fluid is 

supplied from the injection well. We terminate the 

simulation at 300,000 seconds because the fluid front 

has reaches the boundary of the simulation domain. 

At this moment, the injection rate is still slowly 

decreasing and the production rate is slowly 

increasing. The flow rate at t=300,000 seconds for all 

four scenarios are summarized in Table 2.  

 

 
Figure 6: Flow rate at the two wells in scenario A. 

 

Table 2: Absolute flow rate at t=300,000 seconds. 

Scenario Injection  (L/s) Production (L/s) 

A 0.0183 0.00991 

B 0.0197 0.00913 

C 0.0197 0.00779 

D 0.0193 0.00720 

 

The fluid recovery ratios (production flow rate 

divided by injection rate) for the four scenarios are 

54%, 46%, 40%, and 37%, respectively. The benefit 

of production well stimulation is apparent, but the 

back pressure seems to not only reduces flow rate but 

also decreases recovery rate. Placing more production 

wells should increase the recovery ratio, but this is to 

be studied in the future. 

 

SUMMARY 

 

In this study, we investigate the use of a numerical 

test bed to study the stimulation of existing fracture 
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networks with relatively low hydraulic pressure. We 

found that in this regime, the coupling between the 

flow and the solid phase can be considered local and 

the numerical model can be greatly simplified. The 

results show that low pressure stimulation can indeed 

stimulate the entire network, instead of propping a 

primary fracture as in high pressure stimulation. This 

paper only documents our initial effort along this 

path, and more realistic scenarios are to be studied. 
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A weighted Nitsche stabilized method for small-sliding

contact on frictional surfaces
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Abstract

We propose a weighted Nitsche framework for small-sliding frictional contact
problems on three-dimensional interfaces. The proposed method inherits
the advantages of both augmented Lagrange multiplier and penalty methods
while also addressing their shortcomings. Algorithmic details of the trac-
tion update and consistent linearization in the presence of Nitsche terms
are provided. Several benchmark numerical experiments are conducted and
the results are compared with existing studies. The results are encouraging
and indicate accurate satisfaction of the non-interpenetration constraint, sta-
ble tractions and asymptotic quadratic convergence of the Newton-Raphson
method.

Keywords: frictional contact, frictional cracks, Nitsche, X-FEM, interface

1. Introduction

The mechanical response of frictional interfaces is of prime importance
in many engineering applications ranging from crack-closure effects in micro-
fractures to frictional sliding between rock joints and geological faults. These
effects span length-scales that are orders of magnitude apart yet are equally
significant at either end of this spectrum. Robust numerical strategies that
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enable modeling of these effects can have far-reaching consequences in guid-
ing important engineering decisions such as predicting fatigue life [2], seismic
hazard characterization and engineering fracture networks for efficient ex-
traction of shale gas and geothermal energy [3, 4, 5, 6, 7, 8].

Fracture and interface problems in a Lagrangian framework typically re-
quire a constantly changing mesh topology to model discontinuous fields.
This poses significant challenges for the finite element method. A variety of
approaches have been proposed to address these issues including strong dis-
continuity approaches (see Simo et al. [9]) interface element techniques (see
Xu and Needleman [10], Camacho and Ortiz [13], Settgast and Rashid [14]),
discontinuous Galerkin methods (Radovitzky et al. [15]), and generalized
and extended finite element methods (Duarte et al. [17], Moës et al. [16]).
However, most of these methods suffer from numerical instabilities when con-
fronted with the fundamental problem of crack closure (see Simone [48] )that
is hard to neglect for many physical applications. The key numerical issue in
resolving crack closure effects concerns the enforcement of nonlinear contact
constraints. The most commonly used approaches, viz. the penalty and vari-
ants of Lagrange multiplier methods for enforcing contact conditions either
suffer from a lack of accuracy in the enforcement of the non-interpenetration
condition or from spurious oscillations in contact stresses. For an exhaustive
survey of the methods in computational contact mechanics we refer the inter-
ested reader to the monographs by Laursen [69] and Wriggers [70]. We limit
the discussion to the contributions concerning elastostatic contact constraints
on crack surfaces below.

For conventional interface elements, to enforce contact constraints, penalty
based node-to-node or node-to-surface approaches have been developed by
Gonçalves et al. [18], Day and Potts [19], Schellekens and De Borst [20], and
Warner and Molinari [21] in both fully implicit and explicit time integra-
tion frameworks. Several studies also consider a phenomenological traction-
separation relationship between the compressive tractions and interpenetra-
tions (see Espinosa et al. [22, 23], An and Qin [24]) which essentially collapse
into a penalty method for contact. However, all of these studies suffer from
stress oscillations if the ratio of interface element stiffness with the stiffness
of the element adjacent to it is not carefully chosen (see Day and Potts [19]).
The LArge Time INcrement (LATIN) method of Ladeveze et al. [1] is another
well-established numerical approach to model frictional contact problems (see
Ladeveze et al. [25]).

Within an eXtended finite element method (X-FEM), the LATIN algo-
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rithm has been applied to model crack face contact by Dolbow et al. [32].
Since then, the method has also been extended to three-dimensional problems
by Gravouil et al. [65]. Several other Lagrange multiplier based strategies
have also been developed. For instance, Kim et al. [34] proposed a Lagrange
multiplier method where the interpolation space for the multipliers was con-
structed through an independent interface discretization. Giner et al. [38]
used a segment-to-segment based contact approach with Lagrange multipli-
ers to model crack face contact in 2D with bilinear quadrilateral elements.
Nistor et al. [31] applied the method of Béchet et al. [56] and Hautefeuille
et al. [55] to large sliding contact. Siavelis et al. [49] further extended this
approach to model branched cracks. The challenge with Lagrange multiplier
methods for this class of problems concerns the construction of an inf-sup
stable Lagrange multiplier space [50, 51]. A näıve choice often results in
spurious oscillations for the interfacial tractions.

A popular and commonly used strategy to circumvent the stability prob-
lems of the Lagrange multipliers is the penalty function method (see Perić
and Owen [11]). In the context of crack surfaces, Liu and Borja [26], and
Khoei and Nikbakht [57] developed penalty based approaches for frictional
sliding under the small-sliding assumption. More recently, this approach has
also been extended to problems with bulk plasticity (Khoei et al. [58], Liu and
Borja [27]) and large sliding (Khoei and Mousavi [35], Liu and Borja [28]).
Further, Liu and Borja [29] also proposed a projected polynomial pressure
stabilized formulation for lower order elements, with the option of either
Lagrange multipliers or penalty regularization for the contact constraints.
More recently, Mueller-Hoppe et al. [39] proposed a penalty based contact
formulation to prevent crack face penetration (with no tangential sliding)
for hexahedral elements. The challenge with penalty-based formulations lies
in identifying the “correct” parameters that yield well-conditioned equations
while also satisfying the non-interpenetration conditions accurately. Interest-
ingly, the numerical issues associated with traction oscillations are common
to both the conventional interface elements where the mesh lines align with
the interface and the enriched approaches where the interface is arbitrary
with respect to the mesh [48].

We advocate the use of Nitsche’s method [36] for this class of problems.
In contact problems, Nitsche’s method was proposed for frictionless contact
problems by Wriggers and Zavarise [37]. For elastostatic contact, symmet-
ric and non-symmetric variants of Nitsche’s method have been proposed by
Chouly et al. [40] and Renard [41]. For an analysis of the method estab-
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lishing optimal convergence rates see Chouly and Hild [42] for frictionless
problems and Chouly [43] for Tresca friction. Related stabilized methods
include the Barbosa-Hughes stabilized method of Hild and Renard [44], and
the variational multiscale approach of Masud et al. [45], Truster et al. [46].
Another closely related method based on a consistent perturbed Lagrangian
formulation within the contact domain framework was developed by Oliver
et al. [72] and Hartmann et al. [73] for large deformation frictional contact
problems. Coon et al. [47] used Nitsche’s technique to model earthquake rup-
ture in an extended finite element framework. More recently, Annavarapu
et al. [63, 64] proposed the use of a weighted form of Nitsche’s approach
to model two-dimensional frictional sliding problems over embedded inter-
faces. They found the weighted form to be advantageous for large contrasts
in material properties and for high degree of anisotropy in meshes across the
interface.

We extend the weighted Nitsche approach of Annavarapu et al. [63] to
three-dimensional surfaces and trilinear hexahedral elements. There are
many advantages to this approach over the aforementioned methods. First
and foremost, it is a consistent primal method that circumvents the construc-
tion of an inf-sup stable multiplier space. Secondly, no additional degrees
of freedom are introduced to the system-matrix and no augmentation loops
are necessary to identify the correct multipliers. Finally, with the aid of
numerical analysis the method does not contain any tunable parameters.

The rest of the paper is organized as follows. In Section 2, we describe
the governing equations and the associated variational forms. In Section 3,
we describe the theoretical framework for the proposed approach and the
algorithmic treatment of contact tractions within the proposed framework.
In Section 4, we discuss the discrete equations and the algorithmic tangent
operators. In Section 5, we consider several benchmark examples to illustrate
the performance of the method. Finally in Section 6, we offer concluding
remarks and an outlook for the work.

2. Governing equations and Variational formulation

We begin by considering a domain Ω (an open subset in R3) and its
boundary Γ as shown in Figure 1. Further, we consider Γc to represent a
crack surface with Γ1

c and Γ2
c representing the initially coincident crack faces.

The governing equations for small deformation elastostatics are now given in
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Ω

Γd

Γn

Γ2
c

Γ1
c

Figure 1: Notation for the model problem. Domain Ω, the Dirichlet boundary Γd and
the Neumann boundary Γn are as shown. Γ1

c and Γ2
c represent the initially coincident

crack faces. The complementary part of the boundary is traction free. The normal to the
boundary of a domain is considered to point outwards from the domain.

indicial notation as:
σij,j = 0 in Ω,
ui = ud

i on Γd,
σijnj = hi on Γn,

(1)

where σij and ui denote the components of the stress and displacement fields
in domain Ω, respectively, and nj the components of the unit outward normal.
The displacement is fixed to the prescribed field ud on the Dirichlet portion of
the boundary, and hi denotes the prescribed traction on the Neumann portion
of the boundary. We assume a linear elastic response for the constitutive
relationship in the bulk domain:

σij = Cijklu(k,l) in Ω, (2)

where Cijkl denotes the fourth-order elasticity tensor, and u(k,l) is the sym-
metric gradient of the displacement field.

With respect to the constitutive relationship at the crack surface, we
develop the proposed approach for crack surfaces under the small-sliding
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assumption. First, we introduce a traction field by projecting the stress from
each side of the crack surface so that:

tmi = σm
ijn

m
j on Γc; m = 1, 2. (3)

We relate the tractions, t2i and t1i from both sides of the crack surface through
a force-balance relation. Additionally, for convenience, we define a single
traction field, ti in the local coordinates (n2, τ 21

, τ 22
) of the crack face Γ2

c

such that:
ti = t2i = −t1i on Γc, (4)

To define the interfacial kinematics and constitutive laws, we consider the
following decompositions for the interfacial tractions and displacements in
the local coordinates of the crack face Γ2

c :

ti = tNni + tτ1τ
1
i + tτ2τ

2
i ,

um
i = um

Nni + um
τ1τ

1
i + um

τ2τ
2
i ; m = 1, 2,

(5)

For brevity, in the above, we dropped the superscripts associated with the
crack face index and denote the local coordinates by (n, τ 1, τ 2). We assume
no gap in the normal component of the displacement field such that:

u1
N = u2

N on Γc. (6)

However, we allow for tangential slip and the tangential component of the
displacements are related to the tangential tractions through Coulomb’s fric-
tional behavior. We use [[uj]] = u2

j−u1
j to denote the jump in the displacement

field (or gap) at the crack surface. The flow rule describing sliding and the
yield (or slip) function for Coulomb’s friction are written in rate form, and
given by:

[[u̇τ ]] = β̇
tτ

||tτ ||
, (7)

ϕ(tτ ) = ||tτ || − µtN , (8)

where β̇ represents the slip rate, ϕ(tτ ) represents the yield function and µ
denotes the coefficient of friction between the crack faces. Finally, the Kuhn-
Tucker complimentarity conditions and the consistency equation are given
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by:
β̇ ≥ 0, ϕ(tτ ) ≤ 0, β̇ϕ = 0,

β̇ϕ̇ = 0 (if ϕ = 0).

(9)

The first line in equation (9) specifies the requirements on the admissibility
of the traction field. It also states that any slip only occurs on the yield
surface. The second line represents a persistency condition which ensures
that for the slip rate to be non-zero, the stress state must persist on the yield
surface.

2.1. Variational form

The variational form of the governing equations described above can be
derived as: Find ui ∈ Ui such that:∫
Ω

w(i,j)σij dΩ−
∫
Γ1
c

w1
i t

1
i dΓ−

∫
Γ2
c

w2
i t

2
i dΓ =

∫
Γn

wihi dΓ ∀wi ∈ Vi, (10)

From the traction continuity equation (4), we have: Find ui ∈ Ui such that:∫
Ω

w(i,j)σij dΩ−
∫
Γc

[[wi]]ti dΓ =

∫
Γn

wihi dΓ ∀wi ∈ Vi, (11)

where [[wi]] is the jump in the variations across the crack face and Ui and Vi are
spaces of sufficiently smooth functions for the displacements and variations
respectively. The first and third terms in equation (11) are standard. The
second term represents the contact virtual work. In terms of the normal and
tangential contributions, the contact integral can be written as:∫

Γc

[[wi]]ti dΓ =

∫
Γc

([[wN ]]tN + [[wτ ]] · tτ ) dΓ. (12)

In the following section, we focus particular attention on this term and
detail Nitsche’s formulation for frictional contact.
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3. Weighted Nitsche’s method for frictional contact

3.1. Traction definition

The key idea of a Nitsche based formulation of contact is to evaluate the
contact tractions in terms of the stress state of the bulk material. To that
end, we define a weighted interfacial pressure and shear:

pγ = ni⟨σij⟩γnj, fγ = τi⟨σij⟩γnj, (13)

where ⟨σij⟩γ = γ1σ1
ij + γ2σ2

ij represents a weighted average stress across the
crack surface Γc. For a consistent formulation, the weights γ1 > 0 and γ2 > 0
are only required to satisfy γ1 + γ2 = 1. In the weighted Nitsche’s method
for sliding contact, the normal traction in (12) is evaluated as:

tN = pγ − αN [[uN ]], (14)

where αN > 0 is a stabilization parameter in the normal direction.
For algorithmic treatment of stick-slip behavior, it is convenient to addi-

tively decompose the tangential slip into a recoverable “elastic” and a non-
recoverable “plastic” part so that:

[[uτ ]] = [[uel
τ ]] + [[upl

τ ]]. (15)

A regularized version of Coulomb’s frictional behavior is now stated as fol-
lows:

ϕ(tτ ) = ||tτ || − µtN ≤ 0, (16)

[[u̇pl
τ ]] = β̇

tτ
||tτ ||

, (17)

ṫτ = ḟγτ − ατ ([[u̇τ ]]− [[u̇pl
τ ]]), (18)

β̇ ≥ 0, β̇ϕ = 0, β̇ϕ̇ = 0. (19)

where the tangential plane τ is spanned by unit orthonormal vectors (τ 1, τ 2)
and ατ > 0 is a stabilization parameter in the tangential direction. Although,
a different parameter can be prescribed for each of the directions, here we
choose an identical value for simplified representation. More discussion on
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the particular choice for the stabilization parameters αN , ατ and the weights
γ is conducted in Section 4.

Notice the similarity between the traction expressions (14) and (18) to
augmented Lagrangian treatments of contact [33], where for frictional sliding
the tractions are defined as

tN = λN − ϵN [[uN ]], (20)

ṫτ = λ̇τ − ϵτ ([[u̇τ ]]− [[u̇pl
τ ]]), (21)

with λN , λτ representing the Lagrange multipliers in the normal and tan-
gential directions and ϵN , ϵτ representing the penalty parameters. The aug-
mented Lagrange multiplier treatments are advantageous over pure penalty
methods due to the consistency they lend the formulation. In theory, any
non-zero value of ϵN and ϵτ results in the satisfaction of contact constraints.
In practice, finite values are specified to avoid stability issues resulting from
indefinite matrices. In the weighted Nitsche treatment, the multipliers are
eliminated through their physical interpretation and consequently the ap-
proach retains the consistency properties of the Lagrange multiplier method.
For a more theoretically rigorous discussion on the consistency of the formu-
lation, we refer the interested reader to the paper by Chouly [43].

The primary difference between the weighted Nitsche’s treatment and
augmented Lagrangian methods is that the former does not introduce an
additional field. No additional iterations are required to identify the correct
multipliers as the pressure pγ and shear fγ are defined directly in terms of
the bulk stress-state. Finally, as a consequence of the consistency of the
method, the parameters αN and ατ do not serve so much to enforce the non-
interpenetrability constraint as they do to ensure numerical stabilization for
the method. Another consequence of consistency is that unlike penalty reg-
ularizations, the “elastic” component of slip is minimized and consequently
we get a closer approximation to Coulomb’s behavior than a regularized law.

While we notice that the proposed variational formulation is non-symmetric,
we recall that for frictional contact problems a symmetric bilinear form is not
necessarily advantageous. The coupling in normal and tangential directions
for Coulomb’s friction results in a naturally non-symmetric tangent stiffness
even for symmetric bilinear forms (see [69, 70]).
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3.2. Algorithmic treatment of frictional contact conditions

The external load is applied incrementally and the contact integral (12)
is evaluated at load step n+1 as:∫

Γc

[[wi]]ti dΓ =

∫
Γc

([[wN ]]t
n+1
N + [[wτ ]] · tn+1

τ ) dΓ. (22)

For frictional sliding without an opening mode, the normal tractions at load
step n+1 are given by:

tn+1
N = pn+1

γ − αN [[u
n+1
N ]], (23)

The equations (16)-(19) are integrated using a backward Euler integration
scheme and the tractions are updated using the return mapping strategy. The
basic algorithmic framework is described below (see Simo and Hughes [68]
for a detailed description of the return mapping approach). To begin with,
a trial stick state is calculated as:

ttrial, n+1
τ = fn+1

γ τ + ατ ([[uτ ]]
n+1 − [[upl

τ ]]
n
),

ϕtrial, n+1 = ||ttrial, n+1
τ || − µttrial, n+1

N ,

(24)

Finally, the tractions are projected on to the yield surface through a return
map:

tn+1
τ = ttrial, n+1

τ − ατ∆β
tτ

trial, n+1

||tτ trial, n+1||
. (25)

The magnitude of slip is given as:

∆β =

 0 if ϕtrial, n+1 ≤ 0,
ϕtrial, n+1

ατ

otherwise.
(26)

Substituting equations (23) and (25) into (22) completes the weighted Nitsche
formulation for frictional contact.

4. Discretization and Algorithmic Tangent Operators

The domain Ω is discretized into a set of non-overlapping regions Ωe.
We introduce the spaces Uh

i ⊂ Ui and Vh
i ⊂ Vi as finite-dimensional ap-

proximations to the solution and weighting spaces. We follow the standard
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Bubnov-Galerkin approximation and assume Uh and Vh to be identical with
Dirichlet conditions built into the the solution space Uh. The displacement
interpolation can now be constructed as:

uh =
∑
I

NIuI (27)

where NI are the nodal shape functions constructed from piecewise contin-
uous polynomial functions and uI are the nodal degrees of freedom.

Introducing the above approximation (and an identical approximation for
the weighting functions) into the variational form (11), it is easy to obtain
the following discrete statement of equilibrium in the residual form:

R(u) = Fext(u)− Fint(u) = 0, (28)

where the external force vector is given as:

Fext(u) = A
e

∫
Γne

NThm dΓe, (29)

where A denotes the assembly operator. The internal force vector has bulk
and contact contributions so that:

Fint(u) = Fb
int(u) + Fc

int(u). (30)

The bulk contribution can be written as follows:

Fb
int(u) = A

e

∫
Ωe

(BTDB)ue dΩe, (31)

where the matrix B contains the shape function derivatives, the matrix D
represents the elasticity tensor in Voigt notation, and ue is the local vector
of nodal unknowns. Finally, the contact contribution to the internal force
vector is obtained:

Fc
int = A

e

∫
Γce

NT t([[u]]) dΓe, (32)

where t([[u]]) is the contact traction, updated as described in Section 3.2.
We solve the nonlinear set of equations (28) at each load step using the
Newton-Raphson iterative scheme. We linearize the internal force vector,

11



Fb, n+1
int, (k)+Fc, n+1

int, (k), about the current state, defined by un+1
(k) , using a first-order

Taylor series expansion to obtain:

Kn+1
(k) ∆un+1

(k+1) = Fn+1
ext − (Fb, n+1

int, (k) + Fc, n+1
int, (k)). (33)

We solve for the incremental nodal displacement, ∆un+1
(k+1), at the k-th itera-

tion. For brevity, subsequently, we omit the superscript, k, and the subscript,
n+1, denoting the iteration and load counters respectively. The tangent ma-
trix, at the (n+1)-th load step and the k-th iteration is now denoted by K,
such that:

K =
∂(Fb

int + Fc
int)

∂u
. (34)

The linearization of bulk contribution yields:

∂Fb
int

∂u
= A

e

∫
Ωe

BTDB dΩe. (35)

The linearization of the contact contribution yields:

∂Fc
int

∂u
= A

e

∫
Γce

NT ∂t([[u]])

∂u
dΓe, (36)

where the contact traction t([[u]]) depends on the traction update (25). It is
easy to obtain the following block structure for the linearized contact tangent
matrix:

K =

Kc,1
d Kc,1

od

Kc,2
od Kc,2

d

 , (37)

where 1 and 2 represent the local indices of the contact face pairs. While still
under a stick state, from (26) and (25), t([[u]]) = ttrial([[u]]). Recognizing from
(25) that the trial traction additively decomposes into the Nitsche consistency
and stabilization parts, evaluating, ∂ttrial([[u]])/∂u results in the following
expressions for the local matrices:

Kc,m
d = A

e
kstab
e −A

e
γm
e k

nit, m
e for m = 1, 2,

Kc,1
od = −A

e
kstab
e +A

e
γ2
ek

nit, 2
e ,

Kc,2
od = −A

e
kstab
e +A

e
γ1
ek

nit, 1
e .

(38)
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The entries of the local matrices are given as follows:

kstab
ij =

∫
Γce

Nj
∂tstab, triali

∂uj

dΓe;
∂tstab, triali

∂uj

= αijNj,

knit, m
ij =

∫
Γce

Nj
∂tnit, m, trial

i

∂uj

dΓe;
∂tnit, m, trial

i

∂uj

= nm
l D

m
lkB

m
kjNj.

(39)

When in perfect contact, the stabilization parameters in the normal and tan-
gential directions are chosen identically with no coupling between the normal
and tangential directions such that αij = αδij. The stabilization parameter
α and the interfacial weights γm

e play a key role in the numerical performance
of the method [61, 62]. These are evaluated locally as detailed in Annavarapu
et al. [61]. The central idea proposed there was to identify the weights that
result in the smallest possible value of the stabilization parameter while en-
suring the coercivity of discrete forms. For bilinear and trilinear elements,
while a rigorous coercivity criteria requires a local eigenvalue computation
(see Embar et al. [52], Harari and Shavelzon [53]), we utilize the algebraic
estimates available for constant strain elements for these elements as well to
save computational expense. In practice, the algebraic estimate obtained for
constant strain elements might slightly underestimate the stabilization nec-
essary for bilinear quadrilaterals and trilinear hexahedral elements (Sanders
et al. [54]). However, we did not notice instability in the numerical examples
we investigated.

When slipping, the contributions from the slip vector in the tangential
plane also need to be accounted for during linearization so that (in indicial
notation):

∂tτi
∂uj

=
∂ttrialτi

∂uj

− ∂

∂uj

(∆βαmi) ; mi =
ttrialτi

||ttrialτ ||
; for i = 1, 2; j = n, τ 1, τ 2.

(40)
Substituting the expressions for ∆β from (26) and using the chain rule of
differentiation, we get the expression for the algorithmic tangent operator:

∂tτi
∂uj

=
µttrialN

||ttrialτ ||

(
∂ttrialτi

∂uj

−mimk

∂ttrialτk

∂uj

)
+ µmi

∂ttrialN

∂uj

. (41)

Note that, on transforming the trial stiffness given in (39) to the local coor-
dinates (n1, τ 1, τ 2), we already know all the terms that appear on the right
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hand side of (41) and the tangent operator can now be easily evaluated. The
additive decomposition property of the trial traction can again be utilized to
update the Nitsche consistency and stabilization stiffnesses separately. Also,
note that in the normal direction, no update is necessary as the trial and
true tractions are the same.

5. Numerical examples

In this section, we consider several benchmark numerical examples to val-
idate the performance of the proposed approach. Unless otherwise specified,
we use a weighted form of Nitsche’s method in all our simulations. We pro-
vide plots for bulk displacements and contact tractions and compare these
results with existing studies where applicable. The bulk material follows
linear elasticity while the contact interface is assumed to follow Coulomb’s
frictional behavior. The nonlinear equilibrium equations are solved itera-
tively using the Newton-Raphson method. Convergence is measured in the
energy norm and a tolerance of 10−16 is specified for all the examples con-
sidered. Finally, the numerical simulations are conducted using GEOS [12],
a massively-parallel multiphysics simulation software developed at Lawrence
Livermore National Laboratory.

5.1. Frictionless contact between two elastic blocks

As a first example, we consider a planar crack surface under frictionless
sliding investigated earlier by Liu and Borja [29]. We consider an elastic
cube of unit length with a crack surface located at z = 0.5 m and extending
through the length of the cube in the x and y dimensions. Unlike the earlier
study by Liu and Borja [29], here, we assume that the mesh lines align with
the crack surface. The bulk material obeys linear elasticity and has a Young’s
modulus of E = 10 GPa and a Poisson’s ratio of ν = 0.3.

The boundary conditions are such that the surface z=0 m is constrained
in all directions while the top surface z=1 m is constrained laterally and a
uniform displacement of uz = −0.1 m is applied to load the cube in com-
pression. We conduct the simulations using both constant strain tetrahedral
and trilinear hexahedral elements with 21 divisions in x, y and z directions
in each case. As expected for frictionless sliding, the method converged in
three Newton iterations for both tetrahedral and hexahedral elements.

In Figure 2, we compare the normal pressures at the crack surface ob-
tained using Nitsche’s method and unstabilized penalty and Lagrange mul-
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(a) Normal pressures (in GPa) at the crack
surface for the unstabilized Lagrange mul-
tiplier and penalty methods from Liu and
Borja [29]

(b) Normal pressures (in GPa) at the
crack surface with Nitsche’s method and
constant strain tetrahedrons

(c) Normal pressures (in GPa) at the crack
surface with Nitsche’s method and trilin-
ear hexahedral elements

Figure 2: Comparison of normal contact pressures at the crack surface obtained using
Nitsche’s method (bottom) and unstabilized penalty and Lagrange multiplier methods
from Liu and Borja [29] (top)
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tiplier approaches from the earlier study by Liu and Borja [29]. Figure 2(b)
shows the normal pressures obtained using linear tetrahedral elements while
in Figure 2(c) we plot the pressures obtained using trilinear hexahedral el-
ements. Clearly, the pressures obtained using Nitsche’s method are smooth
and do not exhibit the instability observed in unstabilized penalty and La-
grange multiplier approximations.

5.2. Sliding of an elastic block on a rigid surface

As a next example, we consider an elastic block sliding on a rigid founda-
tion considered previously in Oden and Pires [60], Wriggers et al. [59], Simo
and Laursen [33], Armero and Petocz [30] and Annavarapu et al. [63]. This
benchmark is standard for frictional contact problems and serves as an im-
portant validation study. For completeness, we describe the problem setup
and boundary conditions below.

The computational domain is a rectangular parallelepiped spanning (0, 4)×
(−0.4, 2)× (0, 1) with an interface at y = −0.057 and an outward normal in
the (0,−1, 0) direction separating the elastic and rigid blocks. The elastic
block is considered to have a Young’s modulus of E = 1000 units and a Pois-
son’s ratio of ν = 0.3 while the rigid block has a Young’s modulus of E = 1012

units and ν = 0.0. Coulomb’s frictional behavior is assumed for frictional
sliding between the blocks with a frictional coefficient of µ = 0.5. The load-
ing is prescribed such that the elastic block is pressed down in the negative
y-direction on the surface y = 2 and pulled in the positive x-direction on
the surface x = 4. The rigid block is constrained on the surface y = −0.4
in both x and y directions. Further, to reproduce the plane-strain condi-
tions of previous studies, we constrain the surfaces z = 0 and z = 1 in the
z-direction. For our studies, we consider two separate discretizations employ-
ing 15876 constant strain tetrahedral and 4410 trilinear hexahedral elements.
The method converges in four Newton iterations and the convergence profile
of Newton-Raphson iterative scheme is shown in Table 1. Also, as reported
for the two-dimensional studies before in [63], classical Nitsche’s method fails
to converge for this problem. A more detailed comparison between classical
and weighted Nitsche approaches is conducted in [61].

In Figures 3(a) and 3(b), we compare the deformed geometry obtained
from Simo and Laursen [33] with the current study. Further, in Figure 3(c),
we plot the contact tractions obtained from the current study using both
tetrahedral and hexahedral elements and compare them with those presented
by Simo and Laursen [33]. As we can see from the results, both the deformed
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(a) Deformed geometry reproduced from
Simo and Laursen [33].

(b) Deformed geometry using Nitsche’s
method. The plotted displacement con-
tours are the y-components of the dis-
placement.
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Figure 3: Deformed geometry and contact tractions for the elastic block sliding on a rigid
surface.
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Table 1: Newton-Raphson convergence behaviour of Nitsche’s method for the sliding block problem

Iteration number Energy norm
Weighted Nitsche’s method Classical Nitsche’s method

1 1.00e+00 1.00e+00
2 9.33e-07 5.40e-08
3 1.99e-14 1.07e-05
4 8.45e-30 6.41e-04
5 – 5.65e-03
6 – 1.26e-01
7 – 1.43e+00
8 – 1.66e+01
9 – 1.57e+03
10 – 2.40e+04
11 – DNC

* DNC: Did not converge in 50 iterations.
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(a) Comparison of contact pressures for Nitsche’s
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Figure 4: Comparison of contact tractions for Nitsche’s method obtained using tetrahedral
and hexahedral elements.
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geometry and the contact tractions obtained from the current study are in
excellent agreement with existing studies. In order to further investigate the
minor oscillations in contact tractions for Nitsche’s method with constant
strain triangular elements earlier reported in Annavarapu et al. [63], we plot
the normal and tangential tractions obtained using both tetrahedral and hex-
ahedral elements and compare them in Figure 4. Clearly, we can see that
the hexahedral elements result in a smoother traction profile and the tetra-
hedral elements continue to exhibit the minor oscillatory pattern reported
earlier. We can thus conclude that the oscillatory pattern results from the
poor stress approximation yielded by tetrahedral elements rather than any
inherent instability in Nitsche’s method.

5.3. Compressive loading of a plate with an inclined interface

We next investigate the stick-slip response of a plate loaded in compres-
sion with an interface inclined at an angle of θ to the x-y plane and extending
throughout the z-dimension. This problem has been investigated earlier in
plane-strain conditions by Dolbow et al. [32], Kim et al. [34] and Annavarapu
et al. [63] and provides an easy way to test the method’s capability in mod-
eling Coulomb’s friction. The problem is analogous to that of a rigid block
resting on an inclined surface and predicts stick response when the coefficient
of friction µ > tan θ and a slip response when µ < tan θ. The problem setup
is identical to the one described in previous studies. Appropriate boundary
conditions are prescribed to eliminate rigid body modes and y = ymax sur-
face is loaded in compression by prescribing a displacement of uy = −0.1.
Further, to reproduce plane-strain conditions, we also constrain the surfaces
z = zmin and z = zmax in the z-directions. The domain is meshed with 4627
constant strain tetrahedral elements using the open source mesh generation
software Gmsh [71] such that the mesh lines align with the interface. The
orientation of the interface is specified such that tan θ = 0.2. Further, the
bulk material has a Young’s modulus of E = 1000 units and a Poisson’s ratio
of ν = 0.3. We run two separate computations by changing the coefficient of
friction µ. In the first case, the coefficient of friction is chosen as µ = 0.19
such that slipping response is predicted at the interface and in the second
case we choose µ = 0.21 so that we expect a stick state.

The method converged in four iterations when slipping and, as expected,
in two iterations while sticking. The results of these simulations are plotted
in Figure 5. The discontinuity in the x-displacement contours is evident in
Figure 5(a) when the coefficient of friction µ = 0.19 < tan θ while we also
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(a) Frictional coefficient µ = 0.19 < tan θ:
slip expected.

(b) Frictional coefficient µ = 0.21 >
tan θ: stick expected.

Figure 5: Horizontal displacement contours and deformed geometry for compressive load-
ing of a plate with an inclined material interface using Nitsche’s method. The inclination
of the interface is such that tan θ = 0.2. Slip is predicted (left) when the frictional coeffi-
cient µ < tan θ while stick is predicted (right) when µ > tan θ. The deformation is scaled
by a factor of 2.

(a) Solution obtained using Penalty
method when µ = 0.21 and stick is
expected

(b) Zoom of the mesh near the crack
surface for Penalty method

(c) Zoom of the mesh near the crack
surface for Nitsche’s method

Figure 6: Comparison of accuracy in constraint enforcement between Nitsche’s method
and Penalty method when µ = 0.21 and a stick state is expected. The deformation is
scaled by a factor of 2.
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clearly see continuous displacements when µ = 0.21 > tan θ. Further, in
Figure 6(a) we also plot the x-displacement contours obtained using penalty
method with a normal penalty parameter αN = 106 and tangential penalty
parameters α1

τ = α2
τ = 104 when µ = 0.21. While we expect a stick state

for this case, a slight discontinuity in the contours can be seen in the plot.
We further highlight this by zooming into the mesh near the crack surface
in Figure 6(b). This violation of constraints is a common characteristic of
penalty regularization methods with the accuracy directly dependent on the
regularization parameter. In theory, an essentially exact satisfaction of con-
straints is possible only in the limit when the regularization parameter is
infinite. In practice, such large values result in ill-conditioned systems that
manifest as spurious oscillations and stress-locking. Nitsche’s method, on
the other hand, results in a much more exact satisfaction of the constraint,
for finite values of stabilization as can be seen from the zoom of the mesh
plotted in Figure 6(c).

5.4. 3D planar crack under mixed mode loading

As a next example, we consider a 3D planar crack under mixed mode
loading studied earlier in Gravouil et al. [65]. The problem geometry is
similar to the one investigated in the study by Gravouil et al. [65] except
that we consider a straight crack front. The material properties and loading
conditions are also identical to the previous study (see Gravouil et al. [65]).
We assume that Coulomb’s frictional law exists at the crack interface with a
coefficient of friction µ. We use an unstructured tetrahedral mesh with 5041
constant strain tetrahedral elements. The mesh aligns with the crack surface
and is generated using Gmsh [71].

The specified tolerance of 10−16 was attained in thee, four and two it-
erations for µ = 0.0, µ = 0.3 and µ = 0.6 respectively. The displacement
magnitude contours from the current study and those presented in Gravouil
et al. [65] are plotted in Figure 7 for comparison. As is evident from the plot,
the obtained displacements are in excellent agreement. We also project the
normal pressure to the x-y plane and then plot them as a function of x on
the line y = 0.0125 in Figure 8. The y-range is set identical to that chosen
in Gravouil et al. [65] for a fair comparison. From the Figure 8, we see that
the normal pressures exhibit some oscillations which are increasing as the
coefficient of friction decreases. However, unlike the oscillations reported for
the standard LATIN algorithm in Gravouil et al. [65], the magnitude of the
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(a) Displacement magnitude from Gravouil et al. [65]

(b) Displacement
magnitude using
Nitsche’s method
for µ = 0.6

(c) Displacement
magnitude using
Nitsche’s method
for µ = 0.3

(d) Displacement
magnitude using
Nitsche’s method
for µ = 0.0

Figure 7: Comparison of displacement magnitude contours from Gravouil et al. [65] (top)
and current study with Nitsche’s method (bottom) for the 3D planar crack under mixed
mode loading.
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Figure 8: Projected tractions on the crack surface for the 3D planar crack under mixed
mode loading.

oscillations reported here is small and could be related back to the poor stress
approximation of linear tetrahedral elements as discussed in Section 5.2.

5.5. Inclined crack under compression

We now consider the example of frictional sliding on a pre-defined inclined
crack under compressive loading. This example was earlier studied in plane-
strain conditions by Dolbow et al. [32], Liu and Borja [26] and Annavarapu et
al [63]. We extend this example to a three-dimensional setting and consider
a pre-defined planar crack embedded in a unit cube. The crack is inclined
at θ = 45 degrees to the x-y plane and extends through the z-dimension.
The material properties and boundary conditions are considered identical
to previous studies (see Annavarapu et al. [63]). To reproduce plane-strain
conditions, we also constrain the surfaces z = 0 and z = 1 in the z-direction.
We consider a structured tetrahedral mesh with 20 divisions in each direction.

The x and y-displacement contours obtained using Nitsche’s method are
plotted in Figures 9(a)-(b). For comparison, we also plot the displacement
contours using the penalty method. The penalty parameters are chosen as
αN = ατ1 = ατ2 = 1.0 × 1013 to remain consistent with earlier studies. The
plots are in excellent agreement with earlier studies. The proposed method
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(a) x-displacement on using weighted
Nitsche’s method

(b) y-displacement on using
weighted Nitsche’s method

(c) y-displacement on using Penalty
method with αN = ατ1 = ατ2 =
1.0× 1013

(d) y-displacement on using Penalty
method with αN = ατ1 = ατ2 =
1.0× 1013

Figure 9: x and y displacement contours obtained using Nitsche’s method (top) and
Penalty method (bottom) for the crack face frictional contact problem.
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converged in four Newton-Raphson iterations as opposed to the LATIN it-
erative strategy employed earlier in Dolbow et al. [32] which required in
excess of 100 iterations to converge.

5.6. Frictional faults

Figure 10: Illustration of the fault geometry for the active fault problem.

As a final example, we consider an application of the method to model
frictional sliding along active faults. The example serves to test the method
on curved interfaces and also demonstrates its utility in modeling a real world
geological application. The example is motivated from an earlier study by
Xing and Makinouchi [66] that conducted an explicit finite element calcu-
lation using penalty method for plate movement in the north-east zone of
Japan. We consider the model to be a rectangular parallelepiped with di-
mensions of 1 km. in the x-direction, 10 kms. in the y-direction and 3 kms.
in the z-direction. A curved fault surface extends through the geometry as
shown in Figure 10 and represents a realistic fault geometry in the Pacific
plate around Japan [66, 67]. Our objective in this study is to qualitatively
study the effect of frictional coefficient of the fault interface on the relative
slip along it. We ignore gravity effects in the current study. The model is
constrained in all directions on the surface z = 0 km., constrained along x
and y directions on the surfaces y = 0 km. and y = 10 km. and constrained
along x-direction on the surfaces x = 0 km. and x = 1 km. A load of 100
MPa is applied on the surface z = 3 kms. as a traction boundary condition.
We assume the material to have a Young’s modulus of E = 44.8 GPa and
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a Poisson’s ratio of ν = 0.3. Coulomb’s frictional behavior is assumed to
hold for the fault interface and we run the simulation for five different values
ranging from µ = 0.0 and µ = 0.5. The model is meshed with 11894 constant
strain tetrahedral elements conforming with the fault geometry.

(a) µ = 0.0 (b) µ = 0.1

(c) µ = 0.2 (d) µ = 0.3

(e) µ = 0.4 (f) µ = 0.5

Figure 11: z-displacement contours obtained using Nitsche’s method with different coeffi-
cients of friction for the active frictional fault problem.

The results of this study are plotted in Figure 11. As one would expect,
a smaller value of frictional coefficient increases the tendency of the fault
surfaces to slip relative to one another which is clearly evident in the plots
as larger discontinuities. These predictions are also in close agreement with
the earlier study by Xing and Makinouchi [66]. Further, we also tabulate
the Newton-Raphson convergence behavior of Nitsche’s method for various
coefficients of frictions in Table 2. The asymptotically quadratic rates of
convergence of Newton’s method are evident for lower values the coefficient
of friction µ while for µ = 0.4 and µ = 0.5, the method converges in two
iterations indicating no slip on the entire fault surface which is also supported
by the continuous displacement contours in Figures 11(e) and 11(f).
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Table 2: Newton-Raphson convergence behaviour of Nitsche’s method for the frictional
fault problem.

Iteration number Energy norm

µ = 0.0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5

1 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00
2 2.00e-01 5.72e-02 1.45e-02 1.47e-02 3.17e-28 3.17e-28
3 4.07e-28 2.60e-03 3.05e-04 1.60e-05
4 3.86e-09 8.78e-05 2.95e-06
5 1.38e-18 1.63e-05 2.41e-07
6 3.42e-06 1.10e-08
7 2.80e-07 9.78e-13
8 1.01e-08 1.52e-24
9 5.34e-11
10 1.71e-20

6. Conclusion

We proposed a Nitsche stabilized approach to model frictional contact
on three-dimensional crack surfaces. We briefly reintroduced the variational
form associated with this method and recalled the weighted approach used
for the Nitsche consistency terms. We also provided algorithmic details as-
sociated with the derivation of contact tangent operator in the presence of
Nitsche consistency terms. Several numerical examples demonstrated the
efficiency of the method for frictional contact applications for both linear
tetrahedral and trilinear hexahedral elements.

The numerical examples demonstrated that the method is robust and does
not suffer from over or under-penalization like the penalty methods. Unlike
augmented Lagrange multiplier methods, the formulation is purely displace-
ment based and hence results in a smaller system matrix and eliminates
augmentation loops. Finally, the quadratic convergence of Newton-Raphson
iterative schemes is preserved. While we confined attention to mesh-aligned
interfaces in the present work, the method also applies to X-FEM inter-
faces as demonstrated for a two-dimensional case before [63, 64]. With these
considerations, from a numerical standpoint, we contend that the method
is much more efficient than augmented Lagrange multiplier or penalty ap-
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proaches for elastic contact and small sliding problems on both mesh-aligned
and X-FEM type interfaces.

Going forward, several possible extensions of the method are of interest.
Sharp algebraic estimates for the Nitsche stabilization parameter for quadri-
lateral and hexahedral elements remain to be developed. The extension of
the approach to large sliding at the interface could be useful. Investigating
more general constitutive behavior at the interface is also of interest. Finally,
we mention the extension of the approach to incorporate bulk nonlinearities
as a possible future avenue of research.
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1. INTRODUCTION 
The transient mechanical response of rock surfaces in 
contact is of prime importance in many engineering 
applications ranging from crack-closure effects in micro-
fractures to frictional sliding between joint or fault 
surfaces. These effects span length-scales that are orders 
of magnitude apart yet are equally significant at either 
end of this spectrum. Robust numerical strategies that 
enable modeling of these effects can have far-reaching 
consequences in guiding important engineering 
decisions such as seismic hazard characterization and 
engineering fracture networks for efficient extraction of 
shale gas and geothermal energy [1-6]. 

Fracture problems in a Lagrangian framework typically 
require a constantly changing mesh topology and the 
ability to deal with discontinuities both of which are 
significant challenges for the finite element method. A 
variety of approaches have been proposed to address 
these issues including strong discontinuity approaches 
[7] interface element techniques [8], discontinuous 
Galerkin methods [9] and extended finite element 
methods [10]. However, most of these methods suffer 
from numerical instabilities when confronted with the 
fundamental problem of crack closure [11, 12] that is 
hard to neglect for geomaterials and rocks. In this paper, 
we present an approach that alleviates these numerical 

concerns and highlight its efficiency with several 
numerical examples. 

The key numerical issue in resolving crack closure 
effects concerns the enforcement of nonlinear contact 
constraints. The most commonly used approaches, viz. 
the penalty and variants of Lagrange multiplier methods 
for enforcing contact conditions either suffer from lack 
of accuracy in the enforcement of the non-
interpenetration condition or from spurious oscillations 
in contact stresses [13, 14]. We present an alternative 
stabilized approach based on Nitsche's method [15] for 
this class of problems. The method combines the 
attractive features of penalty and Lagrange multiplier 
approaches to yield a robust and computationally 
efficient alternative. The method previously 
demonstrated for frictional contact in X-FEM for 
constant strain triangles by Annavarapu et al. [16, 17] is 
extended here for bilinear quadrilaterals and three-
dimensional problems for crack faces that lie along inter-
element boundaries. Here, we confine attention to 
perfect contact and frictionless sliding. 

The rest of the paper is organized as follows. In Section 
2, we describe the governing equations and the 
theoretical framework for the proposed approach. In 
Section 3, we consider several benchmark examples to 
illustrate the performance of the method. Finally in 
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Section 4, we offer concluding remarks and an outlook 
for the work. 

2. GOVERNING EQUATIONS 
 

 
Fig. 1. Notation for the model problem. Domain Ω, the 
Dirichlet boundary Γd and the Neumann boundary Γn are as 
shown. The complementary part of the boundary is traction 
free. The normal to the boundary of a domain is considered to 
point outwards from the domain. 

We begin by considering a domain Ω  and its boundary 
Γ  as shown in Figure 1. Further, we consider Γc  to 

represent a crack surface with Γc
−  and Γc

+  representing 
the initially coincident crack faces. The governing 
equations for small deformation elastostatics are now 
given in indicial notation as: 

                           σ ij, j = 0    in Ω , 

                             ui = ui
d on Γd  ,                                (1)    

                         σ ijn j = hi  on Γn , 

where σ ij and ui  denote the components of the stress 

and displacement fields in domain Ω , respectively, and 
nj  the components of the unit outward normal. The 

displacement is fixed to the prescribed field ud  on the 
Dirichlet portion of the boundary, and hi  denotes the 
prescribed traction on the Neumann portion of the 
boundary. We assume a linear elastic response for the 
constitutive relationship in the bulk domain. With 
respect to the constitutive relationship at the crack 
surface, we develop the proposed approach for perfectly 
tied crack surfaces and for crack surfaces under small-
deformation frictionless sliding. We relate the tractions, 
ti
+  and ti

−  from both sides of the crack surface through a 
force-balance relation. Additionally, for convenience, we 

define a single traction field, ti  on the n+ −τ + plane of 

the crack face Γc
+  such that: 

                         ti = ti
+ = −ti

− on Γc .                             (2) 

Furthermore, the traction field and the displacements on 
the interface can now be expressed in the normal and 
tangential planes along the interface as: 

                         
ti = tNn

+
i + tττ i

+

ui
m = uN

mni
+ +uτ

mτ i
+; m = +,−

             (3) 

Now in case of perfect contact, in addition to the traction 
continuity, we also have displacement continuity across 
the crack surface such that: 

                       uN
+ = uN

− ; uτ
+ = uτ

− .                                (4)       

For frictionless sliding behavior, the continuity of 
displacements in the tangential direction no longer 
applies. In addition, owing to the lack of friction, the 
crack surfaces develop no stresses in the tangential 
direction i .e. tτ = 0. 

2.1. Variational Formulation 
 
The variational form of the governing equations 
described above can be derived as: Find ui ∈Ui such 
that: 

w(i, j )σ ij
Ω

∫ dΩ− wi
+ti
+ dΓ− wi

−ti
−dΓ = wihi dΓ

Γn

∫
Γc
−

∫
Γc
+

∫   (5) 

for all wi ∈Vi  where Ui and Vi are spaces of sufficiently 
smooth functions for the displacements and variations 
respectively. From the traction continuity equation (2), 
we have: Find ui ∈Ui  such that: 

w(i, j )σ ij
Ω

∫ dΩ− [[wi ]]ti dΓ= wihi dΓ
Γn

∫
Γc

∫                   (6) 

for all wi ∈Vi  where [[wi]] is the jump in the variations 
across the crack face. The first and third terms in 
equation (6) are standard. We now take a closer look at 
the second term that represents the contact virtual work. 
From equation (3), we write the contact integral as: 

[[wi ]]ti dΓ
Γc

∫ = ([[wN ]]tN +[[wτ ]]tτ )dΓ
Γc

∫                 (7) 

For Nitsche’s method, the traction on the crack surface is 
defined in terms of the bulk stresses and interpenetration 
such that: 

𝑡! = 𝑛!! 𝜎!" !𝑛!! −   𝛼! 𝑢!  , 

Ω

Γd

Γn

Γ+
c

Γ−
c

Figure 1: Notation for the model problem. Domain Ω, the Dirichlet boundary Γd and the Neumann boundary Γn

are as shown. The complementary part of the boundary is traction free. The normal to the boundary of a domain is
considered to point outwards from the domain.

where σij and ui denote the components of the stress and displacement fields in domain Ω, respectively, and nj the
components of the unit outward normal. The displacement is fixed to the prescribed field ud on the Dirichlet portion
of the boundary, and hi denotes the prescribed traction on the Neumann portion of the boundary. We assume a linear
elastic response for the constitutive relationship in the bulk domain. With respect to the constitutive relationship
at the crack surface, we develop the proposed approach for perfectly tied crack surfaces and for crack surfaces under
small-deformation frictionless sliding. We relate the tractions, t+i and t−i from both sides of the crack surface through
a force-balance relation. Additionally, for convenience, we define a single traction field, ti on the n+ − τ+ plane of the
crack face Γ+

c such that:
ti = t+i = −t−i on Γc, (2)

Furthermore, the traction field and the displacements on the interface can now be expressed in the normal and
tangential planes along the interface as:

ti = tNn+
i + tτ τ

+
i

um
i = um

Nn+
i + um

τ τ
+
i ; m = +/−,

(3)

Now in case of perfect contact, in addition to the traction continuity, we also have displacement continuity across the
crack surface such that:

u+
N = u−

N ; u+
τ = u−

τ . (4)

For frictionless sliding behavior, the continuity of displacements in the tangential direction no longer applies. In
addition, owing to the lack of friction, the crack surfaces develop no stresses in the tangential direction i .e. tτ = 0.

2.1 Variational formulation

The variational form of the governing equations described above can be derived as: Find ui ∈ Ui such that:
∫

Ω

w(i,j)σij dΩ−
∫

Γ+
c

w+
i t

+
i dΓ−

∫

Γ−
c

w−
i t

−
i dΓ =

∫

Γn

wihi dΓ ∀wi ∈ Vi, (5)

where Ui and Vi are spaces of sufficiently smooth functions for the displacements and variations respectively. From
the traction continuity equation (2), we have: Find ui ∈ Ui such that:

∫

Ω

wi,jσij dΩ−
∫

Γc

!wi"ti dΓ =

∫

Γn

wihi dΓ ∀wi ∈ Vi, (6)

where !wi" is the jump in the variations across the crack face. The first and third terms in equation (6) are standard.
We now take a closer look at the second term which represents the contact virtual work. From equation (3), we write
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where 〈σ ij 〉γ = γ
1σ +

ij +γ
2σ −

ij  represents the weighted 
average traction across the crack face. The formulation is 
consistent for all weights γ1  > 0 and γ 2  > 0 such that 

γ1 +γ 2 =1 . The terms [[uN ]] and [[uτ ]] represent the 
normal and tangential gap respectively while αN  and 
ατ  represent the stabilization parameters in the normal 
and tangential directions. The stabilization and 
weighting parameters that appear in the proposed 
approach are chosen such that the discrete system of 
equations remains positive definite and well-
conditioned. For conciseness, we omit the details 
concerning the precise definitions of these parameters 
and refer the interested reader to Annavarapu [18] for 
additional details. 

Though the stabilization terms in the proposed 
formulation appear similar in form to the penalization 
terms in the penalty method, it should be emphasized 
that the stabilization introduced here is from a purely 
numerical perspective and has little bearing on the 
satisfaction of the non-interpenetration constraint. In 
fact, the consistency of the formulation is ensured for 
any non-zero value of the stabilization parameter. 
Finally, we remark that in the presented form, the 
formulation is non-symmetric. Interfacial sliding 
behavior is often characterized by coupling between 
normal and shear directions (for e.g. Coulomb's law) and 
this coupling manifests as the non-symmetry of the 
consistent tangent matrix and consequently we leave out 
the symmetry terms. However, for perfect and 
frictionless contact, where there is no coupling between 
normal and shear directions it is trivial to recover the 
symmetry of the formulation by adding the conjugate 
terms to equation (7). 

3. NUMERICAL EXAMPLES 
In this section, we consider several benchmark examples 
to validate the performance of the proposed method. We 
compare the results of the proposed approach with those 
of the penalty method and highlight its advantages. 

3.1. Contact Patch Test 
In contact mechanics, the effectiveness of a method in 
enforcing contact constraints is often tested by means of 
a patch test [19] The main idea behind this test is to 
examine the performance of the numerical approach in 
reproducing uniform strain conditions. The domain of 
interest considered here is a 1.0 X 1.0 square region. The 
material within the square block is considered to obey 
linear elastic constitutive behavior and has a Young's 
modulus of E = 1.0 Pa and a Poisson's ratio of  = 0.0. 
The surface y = 0 is constrained to move in the y-

direction and the point (x,y) = (0,0) is constrained to 
move in both x and y-directions. A uniform stretch of uy  

= 0.01 m. is applied on the surface y = 1. It is easy to 
verify that for the specified loading and boundary 
conditions, an analytical expression for the displacement 
field can be derived and is given as: 

 
Fig. 2. Random fracture network distribution in a square 
elastic block. 

ux = 0
uy = 0.01y

                                                             (8) 

Further, a random fracture network is distributed across 
the domain as shown in Figure 2. In addition, we assume 
perfect contact conditions exist across every crack face. 
The results of this study obtained from Nitsche's and 
penalty approaches are presented in Figures 3(b) and 
3(c) respectively. In these Figures, we plot the 
displacements in the y-direction and magnify them by a 
factor of 100. The penalty parameter prescribed for the 
penalty method in both the normal and tangential 
directions is chosen identically as E / h  = 100.0 units 
where E is the Young's modulus and h is the 
characteristic mesh size. For Nitsche's method, since the 
method is consistent for any non-zero value of the 
stabilization parameter, the stabilization parameter is set 
to 1 x 10-4 in both the normal and tangential directions. 

It is clear from the results that Nitsche's method 
essentially enforces the contact conditions in an exact 
sense even with little stabilization. Penalty method, on 
the other hand, exhibits poor accuracy for finite 
penalties. While the accuracy in constraint enforcement 
can be improved upon by tuning the penalty parameters, 
these result in ill-conditioned systems and spurious 
oscillations in contact pressures as shown later in this 
Section. 



 

 
Fig. 3. Displacement contours in the y-direction for the contact 
patch test obtained using Nitsche’s method (left) and the 
penalty method (right). The plotted displacements are 
magnified by a factor of 100. 

3.2. Plane-strain Frictionless Sliding contact 
 

 
Fig. 4. Mesh and crack geometry for the plane-strain 
frictionless sliding example 

We now revisit a horizontal crack in frictionless sliding 
earlier investigated by Liu and Borja [12]. Here we 
consider a square elastic block of unit length with a 
horizontal crack extending through the middle as shown 
in Figure 4. The material is considered to have a Young's 
modulus of E = 10 GPa and a Poisson's ratio ν = 0.31 
for the material above the crack and ν = 0.29 for 
material below crack surface. The slight difference in 
Poisson's ratio provides conditions for sliding when the 
material is compressed. Further, we assume the bulk 
material obeys linear elasticity and deforms under plane-
strain conditions. The boundary conditions are such that 

both the top and bottom surfaces are clamped laterally 
while the bottom surface is clamped vertically as well. 
Further, a uniform displacement of uy  = -0.1 m. is 
applied at the top surface. 

 

 
Fig. 5. X-displacement contours obtained using Nitsche’s 
method (top left), penalty method with a finite penalty (top 
right) and with a large penalty (bottom). The colours range 
from -0.02 (blue) to 0.02 (red). 

In Figure 5, we plot displacement contours in the x-
direction obtained using Nitsche's method and the 
penalty method for two different penalty parameters. 
Our choice for the penalty parameter here is illustrative 
of the two extremes (a) a large value of αN = 1012 
GPa/m that enforces the non-interpenetration constraint 
with high accuracy and (b) a finite value of αN  = 103 
GPa/m that ensures good scaling and well-conditioned 
system matrices but poor constraint enforcement. It 
should be noted that the displacement contours are 
nearly indistinguishable for all three cases. The 
differences become apparent by comparing the stress and 
interpenetration at the interface. In Figure 6, we plot 
σ yy obtained using Nitsche's method and the penalty 

method with a penalty parameter of αN = 1012 GPa/m. 
The severe stress locking exhibited in the results 
obtained using the penalty method is evident while the 
stress obtained using Nitsche's method is smooth. A 
smaller penalty of αN = 103 GPa/m returns smooth 
stresses but the interpenetration is much higher as seen 
in Figure 7. This example illustrates the fundamental 
difficulty that numerical analysts face in choosing the 
``right" value for the penalty parameter. 

!
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!
!
!



 
 

 
Fig. 6. Contours of σ yy  obtained using Nitsche’s method 
(top) and the penalty method with a large penalty (bottom). 

 
Fig. 7. Comparison of interpenetration at the crack surface 
obtained using Nitsche’s method (shown in blue) and the 
penalty method with a finite penalty (shown in red). 

3.3. 3D Frictionless Contact 
We now extend the 2D plane-stress frictionless contact 
considered earlier in Section 3.2 and extend it to a three-
dimensional setting. The material has a Young's modulus 
of E = 10 Pa  and a Poisson's ratio of ν = 0.3. The crack 
surface is the plane z = 0.5 and is assumed to be 
frictionless. We clamp both the top and bottom surfaces 

and apply a displacement of uz  = -0.1 m on the top 
surface.  

 

 
Fig. 8. z-displacement contours for the 3D horizontal crack 
under frictionless sliding using Nitsche's method with 
tetrahedral (top) and hexahedral elements (bottom) 

We plot the z-displacement  contours for Nitsche's 
method using both hexahedral and tetrahedral elements 
in Figure 8. In Figure 9, we also plot the normal contact 
pressure obtained using both Nitsche's method and 
penalty method with a penalty parameter of αN = 1016 
Pa/m for tetrahedral elements. The checkerboarding 
pattern in contact pressures is evident for large penalties 
while Nitsche's method returns smooth pressures. 
Similar results were obtained with hexahedral elements 
as well though we have omitted them here to avoid 
repetition.   

3.4. Compressive Fracture with Frictionless 
Sliding on Crack Faces 

As a final example, we demonstrate the performance of 
the method in modeling compressive fracture under 
frictionless sliding.  We follow Nemat-Nasser and Horii 
[21] and consider a single inclined flaw in a square 
elastic block. The diagonal crack extends from (x,y) = 
(0.3 m, 0.3 m) to (x,y) = (0.7 m, 0.7 m). The top and 
bottom surfaces are clamped laterally while the bottom 
surface is clamped vertically as well. The loading is 
applied by compressing the top surface by applying a 
uniform displacement of uy  = - 0.1 m. Further, the 



Young's modulus and Poisson's ratio as chosen as E = 1 
GPa and ν = 0.3 respectively. We consider linear elastic 
fracture mechanics (LEFM) and employed the critical 
stress intensity factor approach to advance the crack tip. 
The propagation direction was determined using a 
maximum circumferential stress criterion for mixed-
mode fracturing (see Fu et al. [22] for details). 

 
 

 
Fig. 9. Normal contact pressure distribution on the crack 
surface obtained using Nitsche's method (top) and Penalty 
method with a large penalty (bottom) 

 

In Figure 10, we compare the results obtained using our 
simulation with the experimental results of Nemat-
Nasser and Horii [21]. As seen from the Figure, new 
tensile fractures develop at the tip of the pre-existing 
flaw and develop ``winged-fractures" that curve and 
orient themselves in a direction parallel to the direction 
of applied loading.  

 
 

 
Fig. 10. Crack trajectory for a compressively loaded pre-
existing diagonal fracture. The left pane shows the 
experimental results of Nemat-Nasser and Horii [21] and the 
right pane shows the results of our numerical model. 

Finally, in Figure 11 we consider multiple flaws oriented 
at 45 degrees to the horizontal axis and load them 
compressively and examine the overall failure pattern. 
We notice that the overall failure mechanism remains 
similar to when the specimen had a single flaw with 
tensile cracks developing at the tips of pre-existing flaws 
and curving towards the direction of applied 
compression. However, we now clearly see the effect of 
pre-existing flaws on the crack trajectory. 

 

4. CONCLUSION 
We have proposed a stabilized algorithm based on 
Nitsche's method to enforce contact constraints over 
continuous and discontinuous surfaces in the finite 
element method. The proposed approach offers many 
computational advantages over the traditional methods.  
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Fig. 10. Compression induced kinked-cracked extension from tips of a pre-existing closed crack; arrows denote the 
direction of axial compression, and 

pression. This is emphasized because, while free boundaries 
do influence the state of stress and therefore alter the critical 
value of the load, the present calculations clearly demon- 
strate that they are not essential for the introduction of 
'runaway' axial cracks in the direction of the greatest 
compression; the free boundary parallel to the direction of 
the greatest tectonic compression, however, may be impor- 
tant in sheet fracture and rockburst, as discussed later on. 

4.2. Comparison With Experiments 
We have performed a number of qualitative experiments, 

in order to study the growth of inclined cracks in uniaxial 
compression. These experiments seem to support the gener- 
al results of analytic calculations. 

Both thin glass sheets and plates made of Columbia Resin 
CR 39 have been used. Although cracks in thin glass sheets 
can be made easily by first scratching the glass with a 
diamond cutter on one side and then tapping it gently with a 
light hammer on the other side, it was found that, because of 
the brittle nature of glass plates, they do not provide an ideal 
medium for fracture studies which involve large compressive 
forces. However, the fracture mode in glass was similar to 
that observed in plates made of Columbia Resin CR 39; in 

Fig. 11. Anti-symmetric kinked-curved crack extension from the 
tips of an existing straight crack. 

the latter matedhal the growth regime could be conveniently 
observed and documented, as shown in Figures 10 and 13- 
20. 

All specimens were cut out of 6 mm thick plates of 
Columbia Resin CR 39, small slits were sawn in them, using 
a 0.4 mm blade, and then each slit was fitted with two 0.2 
mm thick brass sheets, in order to reduce friction between 
the two faces of the slit. 

To prevent lateral buckling, the specimen was held be- 
tween two relatively thick plexiglas plates by means of 
slightly tightened screws. (Dark circles on the edges of the 
photographs in Figure 10, and the remaining photographs are 
these screws.) The interfaces between the plexiglas and the 
specimen were lubricated, in order to allow in-plane defor- 
mation of the specimen without out-of-plane buckling. The 
specimens were subjected to uniaxial in-plane compression 
in a displacement-controlled loading device. 

Figures 10a, 10b, and 10c show, respectively, the slit prior 
to crack extension, after extension, and in the final stage 
when the extension had stabilized. The initial orientation of 
the slit is 36 ø relative to the axial compression, and no lateral 
force is applied. 

The numerical results can be used to estimate the curved 
profile of the kinked-curved crack extension, as follows. 

Consider a point with coordinates, x, œ(x), on the kinked- 
curved crack extension, and let the crack length from the tip 
of the original crack to this point be denoted by l (Figure 11). 
It is reasonable to assume that the angle which the tangent to 
the curved extension makes with the x axis is approximated 
by Oc = Oc(l/c) of the straight kink extension of the same total 
kink length, so that 

df dl 1 
= tan Oc • (21) 

dx dx cos Oc 
ß 

where Oc is obtained from the calculation of sections 2 and 3, 
in terms of the straight kink crack extension length, l/c. The 



 
 

 
Fig. 11. Failure pattern for a rock specimen under compression 
in the presence of multiple flaws. The left pane shows the 
initial configuration and the pre-existing flaws while the right 
pane shows the crack patterns under compression. 

In particular, the proposed method is purely 
displacement based resulting in a smaller size for the 
system matrix and eliminates outer augmentation loop 
required by augmented Lagrange multiplier approaches. 
The variational consistency of the method and the 
proposed choice of the stabilization parameter results in 
well-conditioned system matrices. This allows the 
proposed method to achieve the correct balance of 
enforcing the non-interpenetration constraint and 
recovering contact stresses: a balance often hard to 
achieve by traditional methods.  

Further investigations will consider extending the 
method to model dissipation at the interface through a 
Coulombian frictional model in shear. Additionally, 
extending the method to model Barton-Bandis type 
behavior in the normal direction could also be of interest 
to incorporate observed rock joint behavior. Compared 

with the penalty method, the considerably smaller values 
used as stabilization parameters could also offer 
significant computational advantages in explicit 
calculations by enhancing the CFL time step and hence 
investigating the method's performance in dynamic 
fracture is also of interest. 
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a b s t r a c t

Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal
energy in formations with low natural permeability. Numerical optimization of fracture stimulation often
requires a large number of evaluations of objective functions and constraints from forward hydraulic
fracturing models, which are computationally expensive and even prohibitive in some situations.
Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions
and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this
study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well
design in the presence of natural-system uncertainties. The fractal dimension is derived from the
simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The
surrogate model, which is constructed using training data from high-fidelity fracturing models for
mapping the relationship between uncertain input parameters and the fractal dimension, provides fast
approximation of the objective functions and constraints. A suite of surrogate models constructed using
different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is
conducted to gain insights into the impact of the input variables on the output of interest, and further
used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for
three optimization scenarios with different and uncertain ambient conditions. Our results suggest the
critical importance of considering uncertain pre-existing fracture networks in optimization studies of
hydraulic fracturing.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic communication is a key factor for determining
hydrocarbon or thermal energy recovery sweep efficiency in an
underground reservoir. Sweep efficiency is a measure of the
effectiveness of heat, gas or oil recovery process that depends on
the volume of the reservoir contacted by an injected fluid. In the
petroleum industry, hydraulic fracturing techniques have been
used for over 60 years to increase hydraulic communication and
stimulate oil and gas production (Britt, 2012). Artificial (stimu-
lated) hydraulic fractures are usually initiated by injecting fluids
into the borehole to increase the pressure to the point where the
minimal principal stress in the rock becomes tensile. Continued
pumping at an elevated pressure causes tensile failure in the rock,
forcing it to split and generate a fracture that grows in the
direction normal to the least principal stress in the formation.

Hydraulic fracturing activities often involve injection of a fractur-
ing fluid with proppants in order to better propagate fractures and
to keep them open (Britt, 2012). The design of fracturing treatment
should involve the optimization of operational parameters, such as
the viscosity of the fracturing fluid, injection rate and duration,
proppant concentration, etc., so as to create a fracture geometry
that favors increased sweep efficiency. The net present value (NPV)
introduced by Ralph and Veatch (1986) as the economic criteria, is
usually used as an objective for optimal fracturing treatment
design. Some studies have been reported to use a sensitivity-
based optimization procedure coupled with a fracture propagation
model and an economic model to optimize design parameters
leading to maximum NPV (Balen et al., 1988; Hareland et al., 1993;
Aggour and Economides, 1998). Nevertheless, this procedure,
requiring brute-force parameter-sensitivity analysis, is tedious
and incapable of exploring parameter space globally, which could
potentially lead to the problem of converging to a local minimum
of the objective function.

Rueda et al. (1994) optimized fracturing variables, including the
injected fluid volume, injection rate, fluid and proppant type, by
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applying a mixed integer linear programming (MILP) approach,
which also lacks a global optimization capability. Mohaghegh et al.
(1999) proposed a surrogate-based optimization approach by
using a genetic algorithm to fit the dataset generated from a
fracturing simulator that models both fracture propagation and
proppant transport. Surrogate-based optimization refers to the
idea of speeding optimization processes by using fast surrogate
models. Surrogate-based optimization approaches have been
extensively studied in the past decade for applications in various
fields (e.g., Queipo et al., 2005; Wang and Shan, 2007; Forrester
and Keane, 2009). Ensemble surrogate methods are also actively
studied to achieve more robust approximation by surrogate
models (Goel et al., 2007; Sanchez et al., 2008). Queipo et al.
(2002) applied a neural network algorithm to construct a “surro-
gate” of the NPV for an optimal design of hydraulic fracturing
treatments. The objective function (NPV) was trained as a function
of inputs by a synthetic dataset produced from a high-fidelity
physics model, which integrated a fracturing simulator, a proppant
transport and sedimentation model, a post-fracturing production
model, and an economic model. This surrogate-based procedure is
computationally less expensive for obtaining global minimum
without executing physics-model simulations, which are compu-
tationally prohibitive in some optimizations. However, none of
these studies has considered optimizing the hydraulic fracturing of
a pre-existing fracture network, which is a very common feature of
rocks (Odling, 1992). Moreover, uncertainties of geomechanical
properties and of the pre-existing fracture networks, resulting
from the geologic architecture and fracture properties, such as
fracture density, length, and orientation, etc. (Reeves et al., 2008),
have not been rigorously studied for the optimization of hydraulic
fracturing treatment.

It has been demonstrated from field studies that fluid flow in
fractured rock is primarily controlled by the fracture geometry and
the interconnectivity between fractures (Long and Witherspoon,
1985; Cacas et al., 1990). A fractal is a self-similar geometric set
(Mandelbrot, 1982) with Hausdorff–Besicovitch dimension exceed-
ing the topological or Euclidian dimension, which is called fractal
dimension. It is well recognized that natural fracture networks are
fractal over a wide scale range (Barton, 1995; Bonnet et al., 2001),
and fractal dimensions have been demonstrated to be efficient
metrics for natural fracture patterns (e.g., LaPointe, 1988; Barton,
1995; Berkowitz and Hadad, 1997).

In this work, a surrogate-based optimization approach is
proposed for optimizing hydraulic fracturing design in the pre-
sence of uncertainties in a pre-existing natural fracture network
and its geomechanical properties. A state-of-the-art 2-D hydraulic
fracturing code, GEOS-2D (Fu et al., 2012), is used to simulate
dynamic fracture propagation within a pre-existing facture net-
work. Instead of integrating physical models and economic models
to maximize NPV as the objective function, we focus on physical
criteria, that is, the optimal hydraulic fracture propagation under
uncertain natural conditions. The fractal dimension of the con-
nected fractures can be derived from the post-fracturing network
simulated by GEOS-2D to represent the network density and
connectivity. More importantly, the scale-invariant feature of
fractals allows observations from the core scale to be applied in
another scale (e.g., reservoir scale). Therefore, the fractal dimen-
sion is chosen as the objective function to optimize the hydraulic
fracturing well design. While a line, square, and cubic have the
integer dimensions of 1, 2, and 3, respectively, the fractals in this
study, which are applied to linear fractures in a 2-D plane, have a
non-integer fractional dimension between 1 and 2.

In this paper, both non-parametric and parametric algorithms
are used to construct surrogate models. Both types of surrogate
models are quantitatively evaluated for prediction performance by
cross-validations, and the best quality model is then selected for

optimization. BOBYQA (Powell, 2009), a powerful and efficient
derivative-free nonlinear optimization algorithm, is applied to drive
a global search on the surrogate-modeled response surface. Com-
pared to previous studies, our optimization methodology includes
advances in (1) incorporating uncertain pre-existing natural fracture
networks, (2) constructing both non-parametric and parametric
surrogate models and conducting rigorous quality evaluations,
(3) applying the high-efficient state-of-the-art optimizer, BOBYQA,
and (4) deriving the scale-invariant fractal dimension as the objective
function.

2. Surrogate-based optimization approach

The proposed surrogate-based approach includes the following
key steps (Fig. 1).

1. Populate sample points in parametric space.
2. Setup numerical models and run simulations on those sample

points generated in the previous step.
3. Calculate the objective function from the simulated results.
4. Construct and validate surrogate models using the data from

the previous steps for predication.
5. Perform optimization using selected surrogate model.

2.1. Sampling in parameter space

As shown in Fig. 1 and Table 1, an 11-dimensional parameter
space is constrained by the ranges of the 11 input parameters.
Latin Hypercube Sampling (LHS) procedure is used to draw N
samples in the designed space following probability distribution
functions (PDF) for each parameter. LHS is an effective stratified
sampling approach in a high-dimensional space ensuring that all
portions of a given partition are sampled (McKay et al., 1979). Each
point in the parameter space represents a deterministic vector for
the 11 input variables. Fig. 1 shows an example of a 3-D parametric
space, in which N¼800 sample points are generated from the
uniform distribution within specified parameter ranges.

2.2. Hydraulic fracturing simulations

In this step, the computationally expensive physical models are
constructed and executed N times with each input configuration
sampled in the previous step. On each sample point, an initial
fracture network is generated and the corresponding hydraulic
fracturing is simulated. The initial discrete fracture network is
generated with fracture lengths controlled by the Pareto distribu-
tion (Odling, 1997)

PðL4 lÞ ¼ C⋅l−a ð1Þ
where P is the probability of a fracture of length larger than l, C is a
constant that depends on the minimum fracture length in the
system, which is assumed to be 5% of the domain size (100 m)
in this study, and a is the power law exponent varying between
1 and 3 for natural fracture networks (Davy, 1993; Renshaw, 1999;
Reeves et al., 2008). Typically, the mean fracture length of the
fracture network increases as a decreases. Natural fracture net-
works usually consist of two fracture sets with most fractures in a
set oriented in the same direction (LaPointe and Hudson, 1985;
Ehlen, 2000). In this study, the fracture orientation refers to the
angle between the fracture and the maximum principal stress
direction (east). The orientation of the first fracture set ranges
between 01 and 1351, while that of the second set is always 451
more than the first one. For example, the orientation of the first
fracture set in the pre-existing fracture network shown in Fig. 1 is
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Table 1
Preliminary experiment: parameter importance ranking for the fractal dimensions of opened fractures in post-fracking networks according to Sobol’ total sensitivity indices.

Parameter name PDFa Min Max Sample#1 Indices Rank

11. Fluid viscosity (Pa s) Log–U 0.0001 0.001 0.00025 0.51 1
6. Injection pressure/sh U 1 2 1.7 0.43 2
1. Fracture orientation (deg) U 0 135 25 0.050 3
2. Initial fracture numbers U 50 500 250 0.031 4
7. Young’s modulus (GPa) U 5 50 31 0.026 5
4. Minimum principal stress sh (MPa) U 10 15 10.1 0.022 6
5. Stress anisotropy (sH/sh) U 1 2 1.3 0.014 7
9. Poisson’s ratio U 0.1 0.5 0.2 0.0024 8
3. Fracture power law exponent U 1 3 1.8 0.001 9
8. Joint friction coefficient U 0.5 1.2 0.7 0.0 10
10. Fracture toughness (MPa m0.5) U 0.2 2.0 1.0 0.0 11

a U and Log-U denote uniform and log-uniform distribution.

Parameter set
11. Fluid viscosity
10. Fracture toughness
09. Poisson's ratio
08. Joint friction coefficient
07. Young's modulus
06. Injection pressure/ σh
05. Stress anisotropy (σH/σh)
04. Minimum principal stress σh 
03. Fracture power law index
02. Fracture numbers
01. Fracture orientation

11-D input parameter space (3D shown)
1

2

N

1

2

N

Surrogate Models

Model fitting

Model validation & selection

Prediction

Analysis

Optimization

N values of 

fractal dimensions

Pre-existing fracture

Model

Hydraulic fracturing

Model

Injection well

Fractal dimension

= 1.725

N sample points

Fig. 1. Surrogate-based modeling approach for simulated hydraulic fracturing.
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251 from the input sample, hence that of the second set is 701,
with 451 from the first set.

Hydraulic fracturing under injected fluid pressure is simulated
using an explicitly coupled hydro-geomechanical code, GEOS-2D,
developed at Lawrence Livermore National Laboratory (Fu et al.,
2012). This code couples a solid solver, a flow solver, a joint
module, and a re-meshing module, and is capable of dynamically
simulating fracture propagation in a pre-existing fracture network.
Fig. 1 presents the simulated fracture distribution after hydraulic
fracturing with an injection well located at (0, 0), at sample point
1 with parameter values provided in Table 1.

2.3. Fractal dimension calculation

The fractal dimension of fractures opened by pressurized fluids
can be reasonably representative of the density and connectivity of
the network. Owing to self-similarity of fractals, the fractal
dimension calculated from borehole samples can be extrapolated
to reservoir-scale fracture networks. Due to these attractive
features, the fractal dimension calculated from the simulated
post-fracturing distribution is used as objective function of surro-
gate models for optimization. The box-counting method is used to
measure the fractal dimension of the fracture network (Barton and
Larsen, 1985; Chilès, 1988; Walsh and Watterson, 1993). It involves
overlaying the fracture network with a sequence of grids with
varying cell size r, and counting the number of occupied cells N(r).
The number of cells of side length r needed to cover the fracture
network is approximated as a power law relation

NðrÞ ¼ k⋅ð1=rÞD; ð2Þ
where k is a constant and D is the fractal dimension. By log-
transforming the both sides, we obtain

LogðNðrÞÞ ¼D⋅Logð1=rÞ þ LogðkÞ: ð3Þ
Thus, the fractal dimension D can be derived as the slope of the

line linearly regressed from a series of size r and the corresponding
N(r). Fig. 1 shows that the fractal dimension of the simulated
network is 1.725 from the well-fitted regression line with an R2

value of 0.9963.

2.4. Surrogate-based optimization

Since surrogate models can be quickly constructed once the
expensive training dataset is generated, we build alternatives from
which the best one is selected according to the model validation
results. The selected surrogate model is then used for evaluating
objective functions for optimization or for other analyses.

2.4.1. Surrogate model construction
The calculated fractal dimensions, paired with the correspond-

ing sample inputs, constitute the training data set for construction
of the non-linear relations between them. For n paired observa-
tions, the model is given by

Yi ¼ f ðxiÞ þ εi; i¼ 1 to N: ð4Þ
Here, xi is the input variable vector of sample i, Yi is the response
observation (calculated fractal dimension), f ðxiÞ is the mean response,
εi is the error, and N is the sample number. Generally speaking, there
are two kinds of fitting methods, namely, parametric and non-
parametric regression. The parametric approaches, such as Gaussian
Process (GSP) and Polynomial Regression (PRG), presume a uniform
global function form between input variables and the response
variable, and require the estimation of a finite number of coefficients
(Williams and Rasmussen, 1996; Draper and Smith, 1998), while non-
parametric approaches, such as Multivariate Adaptive Regression
Splines (MARS), use different types of local models in different

regions of the data to construct the overall model (Friedman, 1991).
In our approach, we build MARS, GSP, and PRG models and
determine which one performs the best by follow-up validation.
Various PRG models are also built with different order and different
number of input variables that are the most sensitive ones ranked by
global sensitivity analysis to be discussed in the next section. The
first, second, and third order PRG including Nv input variables can be
expressed as

f 1ðxÞ ¼ β0 þ ∑
Nv

i ¼ 1
βixi;

f 2ðxÞ ¼ f 1ðxÞ þ ∑
Nv

i ¼ 1
∑
Nv

j ¼ i
βijxixj; ð5Þ

f 3ðxÞ ¼ f 2ðxÞ þ ∑
Nv

i ¼ 1
∑
Nv

j ¼ i
∑
Nv

k ¼ j
βijkxixjxk;

where β0, βij, βijk are coefficients to be estimated. Higher order PRG
can be formulated by adding higher-order terms. With more input
variables included in higher order PRG, the fitting is better, but the
number of coefficients increases, which must be less than the
number (N) of observations (training dataset). Because of the limited
training data, there is a trade-off between the order of PRG and the
number of included variables for the best fit.

2.4.2. Global sensitivity analysis
Sensitivity is a measure of the contribution of an independent

variable to the total variances of the dependent variable. Sensitiv-
ity analysis of a model system can be used as the following
purposes.

1. Parameter screening: fix one or more of the input variables
with negligible influence on the output variability.

2. Variable prioritization: rank input variables according to their
sensitivity indices.

3. Variable selection for reducing uncertainty: invest money to
measure those sensitive variables that can reduce output
uncertainty to maximum extent.

There are numerous methods for sensitivity analysis (Frey and
Patil, 2002), among which the Sobol’ (1993) method is used to
drive global sensitivity analysis of input variables for the output
variable, i.e., the fractal dimension. Sobol’ method is a variance-
based sensitivity analysis, which decomposes the variances of the
output into fractions attributed to each input (first-order indices)
and their interactions (second- or higher-order indices). These
fractions are interpreted as the sensitivities. Sobol’ total sensitivity
measures the contribution to the output variances of each input
variable, including all variances caused by its interactions with any
other input variables in all the orders. Using the training dataset,
Sobol’s total sensitivity indices can be calculated to measure the
relative importance of each input variable to the output of the
hydraulic fracturing system. In this study, the sensitivity analysis
for the preliminary experiment screens out the non-sensitive
parameters to reduce the parameter dimension for the 2nd stage
experiment of optimization. The selection of input variables from
the reduced-dimension parameter space in the PRG models is also
based on the parameter ranking by Sobol’ indices.

2.4.3. Model validation and selection
A well-fitted surrogate model does not necessarily mean that it is

good for prediction. It is easy to over-fit data by including too many
degrees of freedom. One way to measure the predictive ability of a
surrogate model is to test it using a test dataset, which is split from
the sample data and not used in training. Nevertheless, it will limit
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the data available for constructing the surrogate models. Alterna-
tively, the popular leave-one-out cross-validation (LOOCV) method
can make use of the available sample data much more efficiently
(Picard and Cook, 1984). Given N input samples, a surrogate model is
constructed N times efficiently, each time leaving out one of the input
sample from training, and using the omitted sample to test the
model. The generalization error of the LOOCV can be estimated using
the root mean square error (RMSE)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1ðYi−f
ð−iÞ
i Þ2

N

s
ð6Þ

where Yi represents the ith response observation (calculated fractal
dimension), and f ð−iÞi denotes the prediction (interpolated fractal
dimension) tested by sample i using the surrogate model fitted by
all the other N-1 samples. The surrogate model with a minimum
RMSE is selected for optimization.

2.4.4. Optimizer
Bound Optimization BY Quadratic Approximation (BOBYQA)

algorithm is applied to search the minimal objective function
(negative fractal dimension) of the surrogate model f ðxÞ; x∈RN ,
where RN is the N-dimensional parameter space constrained by
the range of each input variable. BOBYQA is a powerful numerical
optimization solver for derivative-free nonlinear problems, subject
to simple bound constraints (Powell, 2009). In the case studies,
optimal hydraulic fracturing design parameters and natural field
properties corresponding to the minimal objective function are
found on the response surface using BOBYQA optimizer.

2.5. Implementation

The proposed approach was implemented in a Python code
that couples the hydraulic fracturing simulator GEOS-2D (Fu et al.,
2012) with the uncertainty quantification tools contained within
the PSUADE code (Tong, 2009). PSUADE (Problem Solving envir-
onment for Uncertainty quantification And Design Exploration) is
a suite of uncertainty quantification modules capable of addres-
sing high-dimensional sampling, parameter screening, global
sensitivity analysis, response surface analysis, uncertainty assess-
ment, numerical calibration, and optimization (Hsieh, 2007;
Wemhoff and Hsieh, 2007; Sun et al., 2012). The computationally
expensive hydraulic fracturing simulations for generation of the
synthetic training dataset (GEOS-2D) are executed using the high
performance computing facilities at Lawrence Livermore National
Laboratory (LLNL). The hundreds of runs are distributed to a LLNL
cluster equipped with Intel 6-core Xeon X5660 processors, 96
nodes, and RAM with 48 GB/node. The box-counting method for
deriving fractal dimension of connected fractures from the post-
fracturing distribution is implemented in a Fortran code.

3. Case study: hydraulic fracturing well design optimization

In this section, the developed surrogate-based approach is
applied to optimizing the hydraulic fracturing well design (loca-
tion and length) in a 2-D domain under uncertain natural-system
conditions. To reduce the dimensionality of the input parameter
space, preliminary simulations are performed to generate a train-
ing dataset used to conduct global sensitivity analysis for para-
meter screening. The input parameter sampling and numerical
simulations are presented in Fig. 1 and Table 1. Based on N¼800
observation pairs, Sobol’ total sensitivity indices are derived and
parameter importance is ranked (Table 1). Of the Nv¼11 input
parameters, two operational ones, working fluid viscosity and
injection pressure, are found to be the most important for effective

fracturing. The four least sensitive parameters with Sobol’ indices
less than 0.01 are screened out. The remaining variables—two
parameters related to pre-existing network, fracture orientation
and number, and three parameters related to rock mechanical
properties, Young’s modulus, minimum principal stress, and stress
anisotropy, are included for the optimization experiment
described below.

3.1. Experimental design

As illustrated in Fig. 2, a horizontal injection well is placed in
an experimental 2-D physical domain along its left-most boundary
(along the y-axis). The pertinent design parameters of interest here
include the length of the open (perforated) injection interval (any-
where from 0 to 40 m) and its center lying between y¼−20 and
20 m. The design parameters and the five most important natural-
system parameters determined above, are treated as uncertain
parameters. A total of 529 input samples are drawn from the
seven-dimensional parameter space using the LHS sampling method.
Two of the seven parameters, fracture orientation and the number of
fractures in the pre-existing network, are fed into the pre-existing
fracture model and the remaining five are applied to the hydraulic
fracturing model. Instead of injection pressure, injection rate is used
as the source term of the fracturing model. The total injection rate is
fixed at 0.25 m3/s, and is averaged over the perforated well length,
which is subdivided into 2-m long injection nodes. As a result, the
injection rate applied on each injection node decreases linearly with
increasing horizontal-well length.

3.2. Synthetic dataset analysis

For each of 529 input samples, pre-existing network are
generated and GEOS-2D models are executed, and nine snapshots
of post-fracturing network distributions are exported in nine
sequential time steps from which the fractal dimensions are

Horizontal Injection well 

Fig. 2. An example of a horizontal well (center at y¼0 m and length¼40 m) placed
in a pre-existing network (orientation ¼0o and number ¼250). The red solid line is
horizontal injection well with uncertain location and length along left y-axis. The
pre-existing fracture orientation and number of natural network are also uncertain.
The maximum and minimum principal stress are assumed x- and y-direction,
respectively. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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derived. Mean values of the 529 fractal dimensions increase with
the injection time or fluid volume (Fig. 3a), suggesting that
fracture networks keep growing with the continuous injection of
fluid. The time series of the mean fractal dimensions also indicate
that their growth rates are very high initially, and gradually
decreases to nearly zero from 11.4 to 51.1 s, suggesting that the
economic benefit of hydraulic fracturing declines with time. The
probability distribution of the 529 fractal dimension results in the
last snapshot at 51.1 s shows that most of them are between
1.5 and 1.7, and the value with highest possibility (10%) is around
1.65 (Fig. 3b). The corresponding cumulative probability indicates
that about 25% of 529 fractal dimensions is less than 1.5, 50% less
than 1.6, and 75% less than 1.65. Only 10% of these fracture
dimension values are above 1.7 and the maximum value is 1.79.
The nine sets of 529 observation pairs consisting of the seven
input variables and the corresponding fractal dimension are
served as the training and testing dataset for surrogate models.

3.3. Global sensitivity analysis

All seven input variables are normalized between zero and one,
based on their upper and lower bounds. For each input sample,
fracture distributions at nine sequential injection time steps were
generated, from which the corresponding fractal dimensions are
derived. Fig. 4 shows the global sensitivity of nine sets of fractal
dimensions to the seven input variables sorted by the last set. For
all the nine time steps, the variability of fractal dimensions is
largely influenced by the initial fracture number and well length
(Sobol’ indices40.5), and moderately by the other 5 input vari-
ables, indicating that the initial fracture number is the key
uncertain parameter influencing post-fracturing conditions. Injec-
tion lengths (and the corresponding averaged injection rate) are
the key contributors to the variability of fractal dimensions at the
earlier injection stages, while initial fracture number becomes the
key contributor at the later stages. Well center location strongly
affects the fractal dimension (Sobol’ indices¼0.4), while becoming
marginally important (Sobol’ indices¼0.1) as injection proceeds.
Overall, two stress parameters, minimum principal stress, stress
anisotropy, and fracture set orientation, influence the objective
somewhat more than Young’s modulus does. The sensitivity

information inferred above is used to rank variable prioritization
to be included in PRG models below.

3.4. Surrogate models evaluation

Non-parametric MARS, parametric GSP and 11 PRG models
with various parameters and orders are constructed for the nine
snapshots, each using 529 observation pairs (input parameters
versus fractal dimension). Table 2 shows the comparison of MARS,
GSP and 11 PRG models constructed for the post-fracturing
distribution (i.e., the last snapshot). The natural-system para-
meters included in PRG models are determined according to the
importance ranking by Sobol’ indices (Fig. 3). For examples,
minimum principal stress is dropped off for the 6-parameter
PRG model, and Young’s modulus is further excluded from the 5-
parameter PRG model, because the two parameters are ranked as
least important for fracturing at the final time step. In terms of
fitting error, the more coefficients that are included, the higher the
accuracy of PRG models becomes. In fact, when the number of
coefficients is greater than 125, PRG models fit the training dataset
better than the MARS model does. Nevertheless, the predictive
ability, tested against a new dataset, will usually get worse as more
terms are included, due to over-fitting. As shown in Table 2, the
RMSE of cross-validation for each surrogate model confirms that
the best fitted PRG model with 461 coefficients turns out to be the
worst in prediction performance, and the quadratic PRG, with
seven variables and just 35 estimated coefficients, had the best
prediction performance among 11 PRG models. Finally, the MARS
model is selected for optimization due to its better prediction
performance than both GSP and the best PRG model.

To illustrate the surrogate model quality regarding fitting and
validation, the scatter plots of fractal dimension simulated by
surrogate models versus GEOS-2D from 529 sample inputs are
compared between MARS model and the best-fitted, but worst-
validated PRG model (5-order 6-parameter) (Fig. 5). The closer the
points are to the diagonal line, the better the surrogate model
matches the physical model. It is seen that the points are clustered
closely along the diagonal line for the PRG model fitting
(RMSE¼0.00805), but are significantly scattered for cross-
validation (RMSE¼0.401). Conversely, points in both the MARS

Fig. 3. Global sensitivity of fractal dimension to the 7 input parameters for 9 sequential injection time steps. The 9 parameter sequences are ordered according to the last one.
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fitting and cross-validation scatter plots are moderately spread with
0.0257 and 0.0410 of RMSE, respectively.

3.5. Horizontal well design optimization

The problem of interest is to find the favorable fracture-
stimulation well design variables, namely, well center y location

and the perforation length, in the presence of natural-system
uncertainty. To investigate how natural-system uncertainty affects
optimal well design, three optimization cases with sequentially
decreasing natural-system uncertainty are performed for the last
snapshot at an injection time of 51.1 s. Case A searches the
minimum objective function (maximum fractal dimension) in a
7-D parameter space, with two design variables and with five
natural-system variables treated as uncertain. Case B is adapted
from case A, with the uncertainty reduced by fixing the fracture
orientation and number, which are two parameters describing the
pre-existing fracture network. In case C, only well location and
length are allowed to vary within the specified ranges during the
optimization process, by further fixing the three geomechanical
variables affecting fracture propagation, minimal principal stress,
stress anisotropy, and Young’s modulus. The objective function to
be minimized is the negative fractal dimension. All the three
optimization cases are efficiently conducted using surrogate mod-
els without rerunning the expensive physics-based GEOS-2D, due
to the flexibility of our surrogate-based approach. The BOBYQA
optimizer, coupled with the selected MARS models, is executed for
the three inverse problems.

Fig. 6 depicts the optimization processes, which involves
searching the minimal objective function for each of the three
cases. It is seen that the number of evaluations of the surrogate
model required to satisfy the convergence criteria (10−6) is 337,
269 and 994, respectively. Each of the optimizations requires
hundreds of model evaluations and can be completed in less than
a minute, while a single realization conducted with the GEOS-2D
code costs tens of hours. Moreover, a physics-based model is
usually not as smooth as its surrogate, implying that a greater
number of model evaluations are required for convergence than
required by surrogate-based optimization. As a result, the high-
efficient surrogate-based optimization approach can make the
otherwise computationally prohibitive procedure practically
achievable. An example of an expensive procedure is Bayesian
stochastic joint inversion modeling using hard (borehole core) and
soft data (geophysical survey), which usually entails expensive
Markov Chain Monte Carlo sampling. Another advantage of the
surrogate-based approach is its high degree of flexibility. Once the
training data is generated from the expensive physics-model
simulations, numerous surrogate models can be constructed and
validated for optimization within a very short time.

The optimal values of the parameter sets corresponding to the
minimum objectives are listed in Table 3. Case A represents a
scenario in which the hydraulic fracturing treatment is designed
with minimal knowledge of the targeted field; thus, a wide range
of the natural-system properties must be accounted for. The
optimal location of the well center is found to be 4.31 m on the
y-axis, and the optimal well length is 0.08 m. This indicates that, to
obtain a maximum fractal dimension, the fluid should be injected
in just one injection node at y¼4 m, and at the rate of 0.25 m3/s,
if fracturing is to be optimized for this level of natural-system
uncertainty. With the entire injection rate concentrated at one
node, the maximum possible hydraulic pressure is achieved,
which confirms our intuition about what will maximize the
growth of the fracture network.

Case B assumes that both the fracture orientation and fracture
number of the pre-existing network are already determined to be
11 and 2501, respectively, on the basis of borehole core data or
other geophysical measurements. The optimal well design para-
meters (position and length) are found to be 5.09 m and 21.3 m,
which corresponds to a hydraulic fracturing scheme where fluid is
injected into 11 nodes, centered at y¼5 m, with each injected at a
rate of 0.25/11¼0.0227 m3/s. Unlike case A, where all of the fluid
injection (and pressurization) is concentrated in one node, pres-
surization in case B is distributed along 11 nodes, suggesting that

Table 2
Evaluation of surrogate models for fracture network at final time.

Construction method Estimated Coefficients RMSE

Fitting Validation

MARS – 0.0257 0.0410
GSP – 0.0278 0.0428
1-order 7-parameter PRG 7 0.0473 0.0483
2-order 6-parameter PRG 27 0.0390 0.0458
2-order 7-parameter PRG 35 0.0378 0.0436
3-order 5-parameter PRG 55 0.0326 0.0452
3-order 6-parameter PRG 83 0.0300 0.0458
3-order 7-parameter PRG 119 0.0283 0.0462
4-order 5-parameter PRG 125 0.0258 0.0506
4-order 6-parameter PRG 209 0.0221 0.0589
5-order 5-parameter PRG 251 0.0184 0.0568
4-order 7-parameter PRG 329 0.0169 0.0865
5-order 6-parameter PRG 461 0.00805 0.4010

Mean: 1.58

Std: 0.112

Fig. 4. Statistics of 529 derived fractal dimension: (a) mean for 9 injection time or
volumes and (b) PDF and CDF at finial time (51.1 s or 12.8 m3 injected fluid volume).
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both the distribution and magnitude of pressure are important for
creating a favorable fracturing network, and must be traded off
given the limited total injection volume. The maximum fractal
dimension is 1.622, which has been significantly reduced from
1.872 in case A, demonstrating the importance of considering
uncertainty of the pre-existing fracture network for optimizing the
hydraulic fracturing treatment. Sensitivity analysis has shown that
the fractal dimension is highly sensitive to the initial fracture
number (Fig. 3), so it is reasonable to conclude that the large
decrease of fractal dimension from case A to B results from the
large reduction of the initial fracture number from 486 to 250. It is
also seen that fracture orientation and Young’s modulus differ a lot
from case A to B, but since they were found not to strongly affect
fractal dimension, they are not likely to be the main contributors
to its decrement.

Case C is designed to investigate the optimal well injection scheme
given full knowledge of the natural system, with all five natural-
system properties fixed as listed in Table 3. The optimized well
injection design parameters turn out to be similar to those in case B,
suggesting that uncertainty of the three rock mechanical parameters
has a small influence on the optimization results. On the other hand,
the comparison with case A shows that the uncertainties of the two
input variables for pre-existing fracture network can lead to a big
difference in the optimization results. These findings demonstrate the
importance of addressing uncertainty of the pre-existing fracture
network, rather than addressing that of the rock geomechanical
properties in optimizing hydraulic-fracturing treatments, which was
lacking in previous studies. The moderate decrement of maximal
fractal dimension from case B to C is believed primarily caused by the
increment of stress anisotropy from 1.0 to 1.2, based on the fact of its
relatively small sensitivity to the other varied rock properties (Fig. 3).

The 2-D response surface for case C is shown in Fig. 7. Apparently,
multiple local minimal objective functions exist, with the global
minimum being found using the BOBYQA optimizer.

Fig. 8 plots the three post-fracturing distributions simulated using
the corresponding optimal input parameter sets. It is apparent that
the network connected by fluid injection for case A sweeps a larger
area than the other 2 cases, demonstrating that the fractal dimension
of opened fracture network is an appropriate indicator of the
potential energy sweep efficiency in the target field. The fractures
in case C propagate mainly along x-axis (maximum principal stress
direction) since the stress field is moderately anisotropic while the
stresses in case A and B are almost isotropic.

4. Summary and conclusions

A surrogate-based optimization approach involving high-
dimensional parameter space sampling, numerical physics-model
simulations, objective-function evaluation, surrogate-model con-
struction and validation, with the coupled execution of the optimizer
and surrogate models, is developed and implemented for optimizing
hydraulic-fracturing decision. For a strongly non-linear process, such
as hydraulic fracturing considered in this study, the surrogate model
constructed by the non-parametric MARS method is demonstrated to
have the best prediction performance according to the cross-valida-
tion, and hence was selected for optimizing the hydraulic fracturing
treatment. The 3 optimization cases, each requiring hundreds of
surrogate model evaluations to meet convergence tolerance, are
completed in less than oneminute, demonstrating the high efficiency
of the approach. A comparison study of 3 optimization cases is
conducted by varying the dimensionality of the parameter space

Fig. 5. Scatter plots of fractal dimension simulated using surrogate model data versus physical model from 529 input samples: the comparison of fitting (red dots) and cross-
validation (blue dots) between MARS and 5-order 6-parameter PRG surrogate models. The tighter the points clustered along diagonal, the closer the surrogate model data
match the physical model data. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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without rerunning expensive physics-model simulations. Moreover,
additional optimizations using surrogate models can be performed
quickly and easily for particular purposes if necessary, for example,
reducing the uncertainty of an input variable by narrowing its range.

The comparison study shows the optimization results which
depend on the degree of uncertainty of the pre-existing fracture
networks. This indicates the importance of incorporating information
about pre-existing fracture networks into the process of optimizing
hydraulic fracturing treatment, which has been largely overlooked by
previous optimization studies in the literature. In contrast, the
influence of uncertainty in rock geomechanical properties on the

optimal injection scheme is found to be less important. These findings
suggest that the pre-existing fracture network, rather than the
geomechanical properties, should be the top priority to be character-
ized before designing a hydraulic fracturing treatment.

The statistical analysis of the training data and fracture net-
works for the three optimized hydraulic-fracturing cases indicates
that fractal dimension is a useful metric for quantifying the density
and connectivity of a fracture network. Furthermore, the scale-
invariant nature of the fractal makes it a universal indicator for the
fracture network across wide range of spatial scales, from core
through outcrop to aerial image scale. The successful incorporation
of fractal dimension into the efficient surrogate-based approach in
this study provides a useful solution for other inverse problems
that suffer from the heavy computational burden and multi-scale
measurements, such as the stochastic joint inversion problem.

The decreasing growth rate of the mean fractal dimension with
injection time implies the diminishing value of continuing the
hydraulic fracturing operation. Therefore, there exists a cost-
efficient time to stop the fracturing operation, that is, the injection
time and the rate need to be optimized for economic objective.
Although this paper is focused on incorporating uncertainty of the
natural system into optimization and hence only considers the
physical criterion as the objective function, the presented
surrogate-based optimization approach, can be modified to find
optimal injection rate and time by integrating an energy produc-
tion model and economic model to derive both physical and
economic criteria as the objective function.

Table 3
Optimization of well center location and length for fracture network at final time.

Input sample space Case A: 7-D Case B: 5-D Case C: 2-D

Range Opt. Range Opt. Range Opt.

Fracture orientation 0–135 121 1 – 1 –

Initial fracture number 50–500 486 250 – 250 –

Minimum principal stress sh (MPa) 10–15 13.02 10–15 13.27 12.5 –

Stress anisotropy (sH/sh) 1.0–1.5 1.07 1.0–1.5 1.00 1.2 –

Young’s modulus (GPa) 5–50 38.33 5–50 48.65 25 –

Injection well center on y-axis (m) −20 to 20 4.31 −20 to 20 5.09 −20 to 20 5.09
Injection well length (m) 0–40 0.08 0–40 21.3 0–40 21.9
Maximum fractal dimension 1.872 1.622 1.547

Fig. 7. The visualized response surface with 2 uncertain design parameters, i.e.,
horizontal well center at y-axis and well length.

Fig. 6. Minimal objective searching curve for optimization case with (a) 7 uncertain
parameters, (b) 5 uncertain parameters, and (c) 2 uncertain parameters. The
optimal parameter values for the 3 cases are proved in Table 3.
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ABSTRACT 

Predicting the ultimate fate of the injected of water or 
supercritical carbon dioxide in the subsurface for storage or 
heat extraction involves understanding the interrelationship 
between multiple processes, such as the hydrological, 
mechanical and chemical transport of the injected working 
geofluid. The majority of these processes take place within 
the fracture and faults which may lead to compromising the 
integrity of the reservoir. Results, obtained using LDEC, 
which analyze the coupling of fluid flow and stresses 
within extensive combined fracture-fault networks are 
presented. Moreover, subsurface is inheritably 
heterogeneous and hydromechanical properties can vary 
spatially from one location to another. Thus, a second 
analysis has been conducted assuming that the 
geomechanical properties are randomly generated between 
both the weak and strong cases. Uncertainty with the 
fracture network orientation could also impact the large 
scale response and activation of the faults and thus the 
integrity of the reservoir, the containment of the working 
geofluid, the surface deformation and ultimately the fluid-
induced seismicity. A third analysis was conducted based 
on alteration of the orientation of the fracture network from 
the base case scenario. The resulting effect on the friction 
and activation conditions along the main faults is assessed. 

INTRODUCTION & PROBLEM STATEMENT  

Global temperatures are increasing. Atmospheric CO2 
concentration is increasing. New carbon management 
legislation and initiatives are based on the assumption 
that increased CO2 levels are a major cause of global 
warming. Several ways of reducing CO2 emissions 
and CO2 levels in the atmosphere include: improved 
efficiency in power generation by upgrading existing 
plants, higher efficiency in all new plants, relying 
more on renewable energy such as enhanced 
geothermal system (EGS, Figure 1a) using water or 
supercritical CO2 as a geofluid, and finally, carbon 

capture and storage (CCS, Figure 1b). EGS and CCS 
share similar technological fundamentals and the 
consequences of their deployment on the 
environment as well as on the public perception such 
as induced seismicity. 

 

Figure 1: a) [Top] Basics of an Enhanced Geothermal 
(Adapted from eere.energy.gov); b) [Bottom] Basics of 
Geological Carbon Sequestration and Well Integrity 
(Adapted from Carbon Sequestration Research and 
Development, 1999, Chapter 5and Gasda et al., 2004) 

Undoubtedly, predicting the ultimate fate of the 
injected water or supercritical carbon dioxide in the 
subsurface for storage or heat extraction involves 
understanding the interrelationship between multiple 



processes, such as the hydrological, mechanical, 
thermal and chemical transport of the injected 
working geofluid (Figure 2, Ezzedine, 2008). The 
majority of these processes take place within the 
fracture and faults.  

 

Figure 2: Potential Hydrological, Thermal, Chemical and 
Mechanical coupling affecting the design of a geothermal 
or a geological carbon sequestration system. 

For instance, reactions induced by the presence of 
geofluid and changes in stress state due to large 
volume of injected geofluid will result in significant 
changes in the permeability of the fractures through 
hydro-thermo-mechanical and chemical precipitation 
and dissolution, healing/precipitation, which alter the 
permeability tensor within the reservoir. Changes 
may be relatively small, but their impact could be 
large. Furthermore, the large rate and volume of 
injection will induce pressure and stress gradients 
within the formation that may activate existing 
fractures and faults, or drive new fractures through 
the caprock, creating new fractures, and thus 
compromising the integrity of the reservoir. We will 
report results obtained using LDEC to analyze the 
hydromechanical coupling of fluid flow and stress 
within extensive combined fracture-fault networks. 
We will also discuss the implications these results 
have for the transport and ultimate fate of the 
working geofluid. Moreover, subsurface is 
inheritably heterogeneous and hydromechanical 
properties can vary spatially from one location to 
another. Therefore, a second analysis has been 
conducted assuming that the geomechanical 
properties, for instance, are randomly generated 
between both the weak and strong cases. Uncertainty 
with the fracture network orientation could also 
impact the large scale response and activation of the 
faults and thus the integrity of the reservoir, the 
containment of the working geofluid, the surface 
deformation (uplifting) and ultimately the fluid-
induced seismicity. A third analysis was conducted 
based on alteration of the orientation of the fracture 
network from the base case scenario. The resulting 
effect on the friction and activation conditions within 
the main faults is assessed. 

THE SIMULATION TOOL: LDEC 

The massively parallel Livermore Distinct Element 
Code (LDEC) is deemed to be the appropriate tool 
for conducting the proposed analyses (Morris et al., 
2002). LDEC is an implementation of the distinct 
element method (DEM) (Cundall, 1988). Using this 
approach one can directly approximate the block 
structure of the jointed rock using arbitrary 
polyhedra. Preexisting joints are, therefore, readily 
incorporated into the DEM model. Furthermore, the 
distinct element method can readily handle large 
deformation on the joints. In addition, the method 
detects all new contacts between blocks resulting 
from relative block motion. The Lagrangian nature of 
the DEM simplifies tracking of material properties as 
blocks of material move. Furthermore, it is also 
possible to guarantee exact conservation of linear and 
angular momentum. By using an explicit integration 
scheme, the joint models can be very flexible. The 
joint constitutive models in LDEC include effects 
such as, cohesion, joint dilation, and fiction angle to 
name a few. LDEC implements two approximations 
to block response: rigid and deformable (Morris et 
al., 2002). 

SIMULATED SCENARIOS 

First, we have conducted strong and weak 
hydromechanical scenarios and compare them to 
the base case scenario reported in Morris (2009) 
(see Figure 3 for the distribution of fractures and 
faults). Three cases where identified based on 
the Young modulus E: 1) weak case: E=5GPa, 
2) mild (base) case: E=10GPa;   and 3) strong 
case: E=20GPa. The Poisson’s ratio is set to 
20% for all cases. For the current analyses, only 
Young modulus has been changed, Poisson’s 
ratio remained constant throughout all 
subsequent analyses. 

These three analyses enable us assessing the 
activation of the faults under different ultimate 
conditions and not relying solely on a base case 
scenario. Subsurface reservoirs are inheritably 
heterogeneous; therefore, the hydromechanical 
properties can vary spatially from one location 
to another. Thus, a second analysis has been 
conducted assuming that the geomechanical 
properties, for instance, are randomly generated 
between both the weak and strong cases. 
Uncertainty with the fracture network 
orientation could also impact the large scale 
response and activation of the faults and thus the 
integrity of the reservoir, the containment of the 
injected water or CO2, the surface deformation 



(uplifting) and ultimately the fluid-induced 
seismicity. A third analysis was conducted based 
on shifting the fracture network by 25 degrees 
from the base case scenario. The resulting effect 
on the friction conditions within the main faults 
is assessed. 

RESULTS 

Simulations involve an extensive fracture 
networks (about 400 thousands of fractures), 
including detailed intersections with faults (four 
faults). We consider only fractures and faults 
within the reservoir itself. These faults have not 
been observed to persist into the overburden. 
Consequently, this initial study is concerned 
only with assessing impact of different 
geomechanical conditions on the evolution of 
the reservoir and not the caprock response. 

Base Case Scenario 

Figure 3 shows the fault-fracture network for the 
Krechba reservoir built using LDEC using the 
same assumptions previously reported in Morris 
(2009). Figure 4 depicts the response of the 
combined fracture and fault network to pressure 
increase overlaid by the slip conditions on the 
faults.  

 
Figure 3: Fracture-fault network model for the Krechba 
reservoir built within LDEC, highlighting the details of the 
individual fractures within the network. The model includes 
400,000 individual fracture elements. 

Pressure field is chosen to reflect conditions 
observed on site. Throughout the entire 
document all figures are plotted for same fluid 
pressure conditions of CO2 in the reservoir in 
order to facilitate the comparison between the 
different cases. This calculation considers the 
poroelastic response of the fractured rockmass 

and includes the redistribution of stresses 
through the combined fracture-fault network. 

   
Figure 4: Overlay of the changes in the pressure field and 
the slip conditions on the fault. 

 
Figure 5: propensity for shear on the faults. The color 
scale reflects the coefficient of friction required to maintain 
stability of the segments of the faults. 

Figure 5 shows our LDEC prediction of 
propensity for shear on the faults. The color 
scale reflects the coefficient of friction required 
to maintain stability of the segments of the 
faults. As faults approach a ratio of 0.6, they are 
presumed to become permeable. Consequently, 
it can be seen that several faults are critically 
stressed and likely to provide fast flow paths. 

Weak Case 

Analyses conducted in previous section have 
been re-analyzed for a weak case scenario where 
the bulk modulus is set to 5GPa and Poisson’s 
ratio fixed at 20%. Figure 6 depicts, for the same 
poroelastic conditions as in the base case 
scenario, propensity for shear on the faults. Not 
surprisingly, weaker conditions promote less 
stability and more slips on the fault.  One can 



also draw the conclusion that the activated fault 
surfaces is by large greater than for the base case 
and confirmed on Figure 7 which  depicts the 
slip conditions on faults. 

 
Figure 6: Weak case scenario: propensity for shear on the 
faults. The color scale reflects the coefficient of friction 
required to maintain stability of the segments of the faults. 

 
Figure 7: Weak case scenario: slip conditions on the fault. 

Strong Case 

Similarly to the weak case, same re-analysis has 
been conducted for a stronger case scenario 
where the bulk modulus is set to 20GPa and 
Poisson’s ratio fixed at 20%. Figure 8 depicts, 
for the same poroelastic conditions as in the base 
case scenario, propensity for shear on the faults. 
Stronger conditions promote more stability and 
less slips on the fault. Figure 9 depicts the slip 
conditions on faults. It is worth noting that the 
activated fault surfaces are less than those 
calculated in the base case scenario. 

 
Figure 8: Strong case scenario: propensity for shear on the 
faults.  

 
Figure 9: Weak case scenario: slip conditions on the fault. 

Random Geomechanical Properties 

Subsurface conditions are by nature 
heterogeneous; therefore, one can expect that the 
subsurface poroelastic properties vary in space 
from one location to another. Moreover, 
analyses conducted in the previous subsections 
assume that the properties are not only strongly 
homogeneous but also take only extreme values 
(e.g. weak and strong). The coexistence of weak, 
average and strong poroelastic properties is the 
rule and not the exception; therefore their 
simultaneous signatures in the subsurface need 
to be assessed through probabilistic framework 
to predict, for example, the impact of their 
spatial variabilities and uncertainties on the 
activation of the faults and thus the integrity of 
the reservoir. As a first step toward this goal, an 
uncorrelated random fields of the density as well 
the Young’s modulus of the rock in the reservoir 
have been generated and unconditionally 



assigned to the rock mass. Figures 10 and 11 
depict the density and Young’s modulus random 
field, respectively. In average, both fields reflect 
the base case scenario. It is worth noting 
however, that in reality, damaged zone (area) are 
generally localized  around the faults 
themselves, or for instance, the zone between the 
two central faults (see Figure 3) may have more 
damaged rock mass and thus weaker properties 
localized between them. Moreover, the 
correlation between the different subsurface 
properties calls for conditional simulations as 
the probabilistic tool. For illustration purposes, 
we limit ourselves to single unconditional case 
as a first step toward building a stochastic 
framework within LDEC. 

 
Figure 10: Example of uncorrelated random of the density 
of the rock of the reservoir. 

 
Figure 11: Example of uncorrelated random of the bulk 
modulus of the rock of the reservoir. 

Similarly to the base case, all analyses have been 
re-conducted for this single random case. 
Figures 12 and 13 depict the shear slip 
conditions and propensity for shear, 
respectively. Not surprisingly, the results are 
somewhat a mixture of the weak, base and 

strong cases conducted in the previous 
subsections. It is however important to mention 
that this is the outcome of a single realization 
and an average though a series of realization is 
needed. 

 
Figure 12: Slip conditions for the random properties case 
 

 
Figure 13: Propensity for shear on the faults for the 
random property case 

Impact of Fracture Orientation 

Rock mass properties are not only the only 
uncertain, spatially variable parameters in the 
subsurface, fracture (joint) orientation is another 
one (Ezzedine, 2010). Without further ado, and 
for illustration purpose, we have re-conducted 
the analyses on a fracture network geometry that 
is 25 degree of the base case scenario. Figure 14 
depicts the fracture-fault network build for the 
current analysis. Only the fractures are re-
oriented to 25 degree off the base case scenario, 
major fault orientation remained the same. The 
computational overburden remains almost the 
same compared to the base case analysis. This 
geological setting of the reservoir has been 
simulated to assess the effect of the fracture 



orientation on the activation of the faults. It is 
worth noting that the in-situ stresses and 
orientations remain unchanged with respect to 
the previous analyses. Figure 15 shows 
propensity for shear on the faults. Because the 
fracture network is at 25 degrees the larger fault 
is more potent to shear practically along the 
entire fault, which is not observed throughout 
the previous analyses. Furthermore, the second 
major fault is well aligned with the new 
orientation of the fracture network and thus 
more shear slip is experienced (larger values, see 
legend of Figure 15). In addition, the motion on 
the faults leads to stress perturbations that 
induce shear loading on adjacent fractures. For 
this specific scenario, the fractures have not 
failed at this level of pressure perturbation. 
However, this coupled interaction between the 
faults and fracture network must be considered 
when predicting the permeability evolution 
within the reservoir (Ezzedine, 2005). 

Again this analysis is limited and a more 
thorough investigation needs to be conducted 
assuming more realistic random network of 
fractures and uncertainty around the orientation 
of the main family of fractures.  

 
Figure 14: Fracture-fault network model for the Krechba 
reservoir built within LDEC, highlighting the details of the 
individual fractures within the network. The model includes 
400,000 individual fracture elements. Notice that the 
fractures are 25 degree off from those presented on Figure 
3. Fault orientation remains unchanged. 

 
Figure 15: Propensity for shear on the faults for the re-
oriented fracture network case 

CONCLUSIONS AND PATH FORWARD 

We have attempted, through a series of 
numerical simulations using LDEC, to predict 
the behavior of the faulted system and the 
response of the overall reservoir under 
poroelastic conditions similar to In-Salah’s. We 
have also built a stochastic framework with 
LDEC to assess the impact of uncertainty not 
only in the physical (geomechanical) properties 
but also geological uncertainty due to the 
characterization of the orientation the fracture 
network. Results presented here are preliminary 
and more numerical simulations need to be 
conducted based on correlated and conditional 
realization of the subsurface at In-Salah.  

Future work will include revising this model to 
include more fractures and varied fracture sets. 
The model will be iteratively coupled with 
reservoir scale reactive transport modeling to 
investigate the interaction between mechanical 
and geochemical processes. In-situ stresses are 
by far the most uncertain in a geomechanical 
uncertainty assessment. Undoubtedly, the 
current stochastic framework can readily be 
extended to include such uncertainty.  The 
outcome of this framework will serve as an input 
to an integrated risk assessment and 
management of the reservoir to minimize its 
integrity breach, minimize surface disturbances 
and mitigate any induced seismicity that may 
occur due to the injection of geofluids. 
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ABSTRACT 

Uncertainties in elementary reaction rates of 

chemical mechanisms have traditionally been 

reported by experimentalists. The development of 

methodologies to represent the chemical reaction-rate 

measurement uncertainties is a necessary step 

towards quantitative predictions of complex reactive 

transport in fractured media. The method presented in 

this study provides a useful framework for 

quantifying uncertainties in both mineral surface area 

and activation energies. Brute force Monte-Carlo 

simulations of flow, heat and mass transport in a 

single fracture illustrating the propagation of the 

chemical and the physical characterization 

uncertainties and their impacts on the aperture 

changes of the fracture under different boundary 

conditions. 

INTRODUCTION 

The chemical processes of solute transport are 

governed by the principles of conservation of mass, 

energy, and charge. All chemical processes in closed 

systems under constant conditions tend toward 

equilibrium by the second law of thermodynamic, but 

the speed of approach to equilibrium varies widely. 

Therefore, almost all current modeling efforts 

distinguish between two broad classes of chemical 

processes: 1) those which are sufficiently fast and 

reversible, so that local chemical equilibrium may be 

assumed to exist, and 2) those which are 

insufficiently fast and/or irreversible reactions, where 

the local equilibrium formulation is inappropriate. 

 

Rubin [1983] has two further levels of classification 

of the chemical reactions within each of two above 

classes (other classification schemes are also 

possible). The first distinguishes reactions by the 

number of phases involved, either homogeneous 

(with a single phase) or heterogeneous (more than 

one phase). Second, within the heterogeneous class of 

reactions are the surface reactions (adsorption and ion 

exchange reactions), and the classical chemical 

reactions (precipitation/dissolution, oxidation or 

redox reaction, and complex formation, although 

redox and complex formation are not always 

heterogeneous). There are three types of chemical 

reactions that are considered significant for chemical 

transport: ion complexation in the aqueous solution 

(fluid phase), sorption on solid surfaces (interphase 

boundaries), and precipitation/dissolution of solids 

(solid phase). 

For the propose of deriving the chemical transport 

equations, we assume that the aqueous component 

species and complex species are subject to 

hydrological transport, whereas the precipitated 

species absorbent component species, adsorbed 

species, and ion-exchange species are not subject  to 

hydrological transport. The general transport 

equation governing the temporal-spatial distribution 

of any chemical species in multicomponent system 

can be derived based on the principle of conservation 

of mass. 

Non-Equilibrium Transport Formulation 

In line with Miller et al. (1983) and Noorishad et al. 

(1987), the partial differential equation of dispersive-

advective mass transport does not change 

fundamentally for consideration of non-equilibrium 

chemical reactions. If basis species are produced or 

consumed irreversibly at finite rate a source term 

must be added to the equilibrium transport equation 

for each basis species involved in the irreversible 

reaction. The mass balance equation for chemical 

transport for any species „j‟ can be written as: 

 



Where L denotes the advection-dispersion spatial 

operator (div(D gard[] - V[]), cbj is the concentration 

of basis ion “j” [mol/l], \bar cbj is the concentration of 

sorbed basis ion “j” [mol/l] of fluid phase, cci is the 

concentration of complex ion “i” [mol/l], cci is the 

concentration of sorbed complex ion  “i” [mol/l] of 

fluid phase, cpi is the concentration of solid “i”[mol/l] 

of fluid phase, aij are the stoichiometric coefficients 

for formation of complex “i”, sij are the 

stoichiometric coefficients for formation of solid “i”, 

V is the fluid velocity vector [m/s], D is the 

dispersion coefficient [m
2
/s], Nb is the number of 

basis species, Nb is the number of sorbed basis 

species, Nc is the number of aqueous complexes, Nc 

is the number of sorbed complexes, Np is the number 

of solids. The second term of the left hand is the rate 

of accumulation of the “j”th substance due to 

aqueous phase reactions (mainly ion complexation), 

the third is similarly a term for sorption, and the forth 

for precipitation and dissolution. The fifth term is the 

reaction term where k refers to basis species involved 

in the reaction and has one or more discrete values in 

the range 1,…,Nb. kj is the Kronecker delta function, 

kb is the stoichiometric coefficient of basis species 

“k” in the reaction, and Rb is the rate of reaction. On 

the other hand, if complexes or solids participate in 

non-equilibrium reactions and if no mass enters or 

leaves the system irreversibly, then the equilibrium 

equation is used without modification. However, the 

mass action equations for each participating complex 

or solid must be replaced by rate equations of the 

type: Xi/t= - RXi where Xi represents the 

concentration of a complex or a solid and RXi is the 

correspondent rate. The mass action for non-

participating complexes and solids remain 

unchanged. 

Chemical Equilibrium Reactions 

Species distribution can be formulated in two distinct 

but thermodynamically related ways: the equilibrium 

constant approach and the Gibb's free-energy 

approach. In the Gibb's free-energy approach, the 

species distributions are obtained by minimizing the 

total Gibb's free-energy function of a given set of 

species subject to the constraints of mass balance 

equations. In the equilibrium constant approach, the 

set of nonlinear algebraic equations (AEs) is obtained 

based on the law of mass action and the principle of 

the mole balance (Morel, 1983). This set of nonlinear 

AEs is then solved to yield the species distributions. 

In the latter approach, equilibrium constants are 

needed, whereas in the former approach, free-energy 

values are needed. In the equilibrium constant 

approach, the formation of complex species, 

adsorbed species, ion-exchanged species, or 

precipitated (solid) species is described at 

equilibrium by the mass action laws. These mass 

action laws are not given here because they are 

classic and available in textbooks (Morel, 1983). 

NUMERICAL SIMULATION FRAMEWORK 

The proposed model of reactive transport of species 

has been implemented in the SDFN-THMC 

framework (Ezzedine, 2005) and has been 

extensively used in recent years to address the impact 

of uncertainties in the geological characterization of 

fracture on the thermal response of an EGS (see 

Ezzedine, 2009-2011). It was originally coded to 

simulate the system at Soultz-sous-Forêts. Fractures 

are either deterministic or stochastic. Fractures are 

characterized by their density, orientation, size and 

aperture. The model allows for multiple sets of 

fractures, each having their own probability 

distribution (density) functions. The model is 

equipped with several numerical schemes for solving 

the different previously mentioned processes and 

different protocol for the numerical coupling of those 

processes (see Figure 1) Moreover, it offers different 

geological conceptualization of the fractures and how 

the physical processes are solved within each fracture 

of the fracture network. 

 

Figure 1:  SDFN-THMC (Ezzedine, 2005) offers an 

ideal numerical framework to address the problem of 

deploying silica gel in EGS. The model allows for 

flow, thermal, and mechanical & chemical simulation 

in a 3d stochastic discrete fracture network. 

Numerical Algorithms 

Yeh and Tripathi (1989) describe three basic methods 

for solving the solute transport and chemical 

equations. The first approach is to solve the transport 

and chemical equilibrium equations simultaneously 

without substitution (NUFT, Nitao 1998, Miller and 

Benson. 1983, and Noorishad et al. 1987). The 

second is the direct substitution approach (DSA), 

which involves substituting the chemical equilibrium 

equations into the transport equations. This approach 

was used by Rubin and James 1973, Valocchi et al. 

1981, Jennings et al. 1982, Rubin 1983, and Lewis et 



al. 1987. The third approach involves splitting the 

calculation into transport equation solution step and 

chemical equilibrium calculation step and performing 

the two steps sequentially (ToughReact, Xu and 

Pruess, 1998). The transport equations are solved 

individually for the total aqueous concentration of 

every component. This approach was used by Grove 

and Wood 1979, Walsh et al 1984, Kirkner et al. 

1984, 1985, Cederberg et al. 1985, Yeh and Tripathi 

1989, 1991, and Kinzelbach and Schafer 1989. Some 

of these models iterate between the transport and 

chemical equilibration calculations at each time step. 

The third approach with iteration is called the 

sequential iteration approach (SIA). In SDFN-THMC 

we opted with one-step DAE solution which is 

numerically robust at the expenses of large computer 

memory requirements. 

Effect of heat transport on chemical reactions 

The formulations presented so far are generally based 

on the assumption of isothermal conditions. 

However, considering the role of variation of 

temperature in any geochemical processes, it is 

necessary to include thermal effects in chemical 

reactions and to formulate heat transport as a 

companion to mass transport. Removing the 

restriction of constancy of temperature does not alter 

the mass transport formulation in any way. The 

temperature change effect is accommodated by 

changing the equilibrium constants. These are 

computed at any desired temperature (within the 

range of data validity) from a power function such as 

[Reed,1982]: 

 

log10 [K] = A + B T + C T
2
 + D T

3
 + E T

4
 

 

where K is the thermodynamic equilibrium constant 

used in any mass action relation. A, B, C, D and E 

are parameters that vary for different chemical 

reactions, and T is the absolute temperature. 

Solution Methods 

As discussed earlier, time and space discretization of 

the governing equations for both reactive chemical 

transport and heat transport lead to matrix equations. 

For heat transport we have used the Crank-Nicholson 

approximation rather than fully implicit methods; 

however, the final form is the same. In case of 

reactive chemical transport equations, the strong 

nonlinearity of the matrix equations mandates the use 

of an iterative scheme. We have used a generalized 

Newton-Raphson method.  

APPLICATION TO CALCITE DISSOLUTION 

Plummer et al. (1978) has conducted a seminal study 

of the dissolution of calcite in CO2-H2O solutions 

over pH ranges from about 2-7, PCO2 ranges from 

3E-4 to 0.97 atm and temperature from 5 to 60
o
C. 

They proposed the simultaneous occurrence of the 

following three reactions on the calcite surface: 

 

Ca CO3 + H+ = Ca
2+

 + HCO3
-
                             (R1) 

Ca CO3 + H2CO3
o
 = Ca

2+
 + 2HCO3

-
                    (R2) 

Ca CO3 + H2O = Ca
2+

 + OH
-
                              (R3) 

 

The net rate of dissolution, R, is given by: 

 

R=d[Ca
2+

]/dt=k1aH++k2aH2CO3+k3aH2O-k4 aca2+ aHCO3- 

 

Where (ai)s are the thermodynamic activities of the i
th

 

reaction and k1, k2 and k3 are the rate constants for 

reaction R1, R2, and R3, respectively. The backward 

reaction constant k4 depends on temperature and 

PCO2 and is given by: 

 

k4 = K2/KC [k1‟ + 1/aH+(s) (k2 aH2CO3 + k3 aH2O)] 

 

where the subscript (s) denotes values on the surface 

of the calcite, K2 is the second dissociation constant 

of carbonic acid and KC is the calcite equilibrium 

constant given in Table 1. The first other mechanistic 

rate constant of H
+
, k1‟, is 10 to 20 times larger than 

measured k1 which is interpreted as the H
+
 transport 

rate constant. The effect of uncertainty of k1‟ is 

addressed in the uncertainty quantification 

subsection. 

 

Table 1: Thermodynamic data at 25
o
C for the 

system CaCO3-CO2-H2O 
Reaction Log K Source 

CaCO3 (Calcite) =  Ca2++ CO3
2- -8.475 JL (1974)a 

CO2+H2O = H2CO3
* -1.466 HD (1943)b 

H2CO3
* = H++HCO3

- -6.351 HD (1943)b 

HCO3- = H++CO3
2- -10.330 HS (1941)c 

CaHCO3
+ = Ca2++HCO3

- -1.015 JL (1974)d 

CaCO3
o = Ca2++CO3

2- -3.153 RE (1974)e 

H2O = H++OH- -14.000 H (1969) f 

a-Jacobson & Langmuir (‟74), b- Harned & Davis (‟43), c-Harned 

& Scholes (‟41), d- Jacobson & Langmuir (‟74), e- Reardon & 
Langmuir (‟74), f- Helgeson (‟69) 

Temperature dependency of reaction constants 

The variations of the reaction constant as function of 

temperatures are given by: 

 

log10[k1] = 0.198 - 444/T  

log10[k2] = 2.84 -2177/T  

log10[k3] = -5.86 -317/T       if 278
o
K   T < 298

o
K  

log10[k3] = -1.10 -1737/T     if 298
o
K < T < 321

o
K  

log10[KC] = -8.446  

log10[K1] = -40.366 + 5576.57/T +… 

                         …+ 11.331 log10 T + 0.034655 T  

 log10[K2] = -77.3723+ 4593.31/T +… 

                         …+ 29.042 log10 T + 5.944E-4 T  

log10[KW] = -80.3723 -1395.46/T +… 



                         …+32.5514 log10 T - 0.0318065 T  

 

For verification and validation purposes we treat here 

only the one dimensional case. Two and three 

dimensional cases will be presented in subsequent 

work. The current exercise was taken from Miller and 

Benson (1983) for comparison with LBNL 1-step 

code CHMTRANS. The initial conditions are: PCO2 = 

3.1623E-2atm, pH=5, CH2CO3=1.473E-3 mol, CHCO3-= 

5.637E-5 mol, CCO32-=1.865E-10 mol. The length of 

the fracture (tube) is set to 10m which was 

discretized into 20 elements. The pressure boundary 

conditions were set to yield a Darcy velocity of 1E-3 

m/year. Even though this velocity is well below 

velocities experienced in fractures for example, it 

serves two purposes: 1) direct comparison with 

Miller and Benson (1983) and 2) allow enough 

residence time for dissolution and considerable 

changes in aperture of the fracture. 

The distribution of chemical species at the end of the 

outlet of the fracture is given on Figures 2-4. 

Concentrations are given in mol/l and time in years. 

To further illustrate the impact of the physic-

chemical conditions, results were also depicted for 

transport with equilibrium, transport with kinetics 

and batch kinetics only (no transport) on the same 

figures. It is worth noting the irregularity of the 

curves, it is because we are not interested by high 

precision but by the accurate representation of the 

physics and the chemistry that take place in the 

fracture. We are building a framework to study the 

uncertainty propagation through a model and its 

impact and value rather than “a model with the best 

number”. We are targeting consistency and accuracy 

rather than precision. The results were obtained using 

k1‟=15. As one can see there are significant 

differences between the different combinations of 

processes at hands. The impact of the different 

transport processes for different species are depicted 

on Figures 5-7 for the time-evolution of (CO3)
2-

, 

Ca
2+

, and HCO3
-
 & H2CO3, respectively. 

 

 
Figure 2:  Transport with kinetics. Concentration of 

species at the end of the fracture. 

 

 
Figure 3:  Transport with equilibrium. Concentration 

of species at the end of the fracture 

 

 
Figure 4:  Kinetics without transport. Concentration 

of species at the “end” of the fracture 

 

 
Figure 5:  Evolution of (CO3)

2-
for different physic-

chemical processes 

 

 
Figure 6:  Evolution of Ca

2+
for different physic-

chemical processes 

 



 
Figure 7:  Impact of transport and equilibrium and 

transport and kinetics for HCO3
-
 and H2CO3. 

DISSOLUTION RATE UNCERTAINTY 

Uncertainty within the experimental data sets 

The dissolution of carbonate minerals, calcite in 

particular, has received considerable study in the 

geochemical kinetics literature (Arvidson et al. 2003, 

and references therein). Despite the accumulation of 

a large dataset over several decades, there is 

significant uncertainty in the value of the dissolution 

rate under given conditions. This dataset is 

summarized in Figure 8 (Arvidson et al. 2003). 

Calcite dissolution is controlled by surface-reaction 

(as opposed to transport) kinetics with increasing pH 

under alkaline conditions far from equilibrium (high 

under-saturation). Figure 8 shows that although the 

data exhibit internal consistency within results from a 

given laboratory, absolute rates at high pH vary by 

well over an order of magnitude which is surprising 

given the large quantity of experimental data 

available. Some of the differences in rate reflect 

differences in experimental conditions (e.g., ionic 

strength, PCO2, alkalinity). However, it is difficult to 

evaluate what additional sensitivity may be present as 

a function of experimental and analytical 

methodology, starting materials, or other factors. We 

are not concerned with the true value but given an 

ensemble of possible rate law from Figure 8 one can 

determine the impact of those models on the 

ensemble average of distribution of the species. If we 

cannot understand the origin of differences in rates 

derived from changes in solution chemistry, then 

neither can we fully understand the relationship of 

those rates. We thus opt for probabilistic uncertainty 

quantification through direct Monte Carlo 

simulations. The rate of dissolutions is on Figure 8 

will serve as a driver for the conditional probability 

of rates given a pH. Here the conditional probability 

is uniform between the min and max of the possible 

rates. Furthermore, k1‟ is considered as a uniform 

between [10,20] as stated in previous section. There 

are several other uncertain factors which could be 

geological or physical which increase the 

dimensionality of the problem. We focus here, 

without loss of generality of scheme, on the 

uncertainty within the rate of dissolution. It is our 

ultimate aim to understand how this uncertainty, 

regardless its origin, can propagate through a THC 

process. 

 
Figure 8:  Published rates of calcite dissolution: 

Solid line with open squares („Sj‟) Sjoberg (1978); 

open squares with forward slash („RSp‟) Rickard and 

Sjoberg (1983); open square with backward slash 

(„RSc‟), Rickard and Sjoberg (1983); coarsely 

dashed line („PWP‟) with no symbols, Plummer et al. 

(1978); finely dashed line („CGW‟) with no symbols, 

Chou et al. (1989); open circles („BP‟), Busenberg  

and Plummer (1986); filled diamond („MB‟), 

MacInnis and Brantley (1992); inverted filled 

triangle („Sc‟), Schott et al. (1989); open square with 

filled lower right diagonal („ShM‟), open square with 

filled upper right diagonal („ShS‟), both from Shiraki 

et al. (2000); Solid line with no symbol Dove and 

Platt (1996); filled triangle („JR‟) computed from 

Jordan and Rammensee (1998); solid square („VSI‟), 

solid square („VSIg‟) “global” rate , Arvidson et al., 

2003. Adapted from Geochimica et Cosmochimica 

Acta, Vol. 67, No. 9, pp. 1623–1634, 2003.  

Numerical propagation of the rate uncertainty 

We have used a Monte Carlo (MC) scheme to 

evaluate the impact of uncertainty on the overall 

distribution of chemical species. Also, a nest MC was 

established for each k1‟. Two thousands MC 

simulation have been conducted. Each run takes 

~10mins on a single CPU processor. This is 

considered as a fast simulation given the number of 

species and the DAE algorithm. The average 

evolution of Ca
2+

 is given on Figure 9. To assess the 

impact of the uncertainty, we have also added the 

upper and the lower limit of the spread due to the 

uncertainty propagation. Similar behavior has been 

observed in the remaining species. It is worth noting 

that the spread of concentration is asymmetric with 

respect to the mean. This implies that the uniform 



distribution of the k1‟ leads to non-Gaussian (or at 

least non-symmetric) distribution of the concentration 

at every time step. 

 

 
Figure 9:  Evolution of Ca

2+
for different physic-

chemical processes with k1‟=15 and confidence 

interval (CI) when k1‟ is iid between [10,20] 

CONCLUSIONS 

We have built a framework to assess not only the 

physical and geological uncertainties through the 

model but also the chemical reactions, especially 

when dealing with kinetic reactions. The framework 

has been demonstrated on in one dimensional case 

and for geochemical dissolution of the calcite. More 

analyses are on the way to study the coupling effect 

of the physical and chemical uncertainties on the 

overall chemical response of the system. 
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Chapter 1

Introduction

SW4mopt is a solver for material inversion and source inversion, built on
the forward solver SW4. Running SW4mopt is very similar to running SW4.
SW4mopt uses the same input commands as SW4, and provides an extended
set of commands, related to the inverse problem.

Given time series data at a number of stations, SW4mopt solves for the
material density, ρ, and Lamé parameters µ and λ, in a material that has been
parameterized in some way. Currently, the only available parameterization
is a representation of the material on a coarse grid. The material at the grid
points is defined by interpolation from this coarse grid. SW4mopt is written
such that it will be easy to extend to other types of parameterizations, e.g.,
representation as B-splines or a mesh free unstructured representation.

For minimization, SW4mopt provides the choice of the limited memory
BFGS method (L-BFGS) or a non-linear conjugate gradient method. These
are run together with a line search algorithm to determine the step length.

As of writing, September 2013, SW4mopt has been successfully run on
simple problems with synthetic data, some of them reported below. It is a
complete solver for the inverse problem. However, it is far from being ready
to be released to the users. SW4mopt is not as robust as SW4, and we need
to test it on many other problems, to make sure that it works as expected,
and to gain experience of material inversion. Furthermore, since SW4mopt
is still in development, it produces a lot of output messages that might be
confusing to the average user.

The following should be done to improve SW4mopt.

• Implement the material parameterization for grids with topography.
Topography is the only critical part that is missing. The material
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gradient can be computed with topography, it is just the coarse grid
parameterization that has not been done.

• Implement a material parameterization which is distributed on the pro-
cessors. Currently one copy of the entire coarse material grid is stored
in each processor. This will lead to memory limitations as problems
size increases.

• Possibility to refine the material grid, so that the inversion to a highly
resolved material can be made hierarchally. The same holds for the
scaling factors. With a higher material resolution, we can not expect
to compute these by forming the Hessian. Can scaling factors be inter-
polated from a coarse grid inversion ?

• Automatic readjustment of the time step when the material speed in-
creases past the largest stable CFL number. This must now be handled
by manual restart, it would be better to have the code doing it auto-
matically.

A few more items that should be addressed, but which require new re-
search and development, and new software.

• Material inversion in an anisotropic material.

• Homogenization techniques to recover isotropic material properties from
the result of anisotropic material inversion.

• Material inversion with attenuation.

2



Chapter 2

The material description

2.1 The mparcart command

The mparcart defines a material that is discretized on a coarse Cartesian
grid, below refered to as the “material grid”. The parameters are the offset
values of ρ, µ, and λ relative a reference material, at the points of this grid.
The material on the computational grid is defined by trilinear interpolation
from the values on the coarser material grid. For example, the density, ρ, at
a grid point (i, j, k) in the computational grid is

ρi,j,k = I({d(ρ)}, xi, yj, zk) + ρ
(0)
i,j,k

where ρ(0) is the reference material, and d(ρ) is the difference ρ− ρ(0) on the
material grid. The interpolation operator

I({u}, x, y, z)

evaluates a function u defined at the points of the material grid, at the point
(x, y, z).

The number of points in the material grid, and initial values for d(ρ), d(µ), d(λ)

are specified by the mparcart command. For example

mparcart nx=5 ny=5 nz=3 init=0

defines a material grid with 5×5×3 points, and with d(ρ), d(µ), d(λ) initialized
to zero at all points. The reference material is specified by one of the material
commands of SW4, e.g., block or pfile, see the SW4 User’s Guide for a
complete description of these material commands.
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Figure 2.1: Two dimensional slice of a material grid with nx = ny = nz = 3.
The free surface boundary is at k = 1, there are super-grid sponge layers on
the other sides. Filled circles indicate unknown parameters, open circles are
fixed boundary values.

Using a coarse material grid reduces the number of unknowns, compared
with using the material at each grid point as parameters. Furthermore,
the resolution in the material is limited in terms of highest frequencies of
the computed wave field, making it unreasonable to expect to resolve the
material down to the resolution of the computational grid. We recommend
that the grid spacing of the material grid is around 10 times the grid spacing
of the computational grid. Also to note, the grid spacing of the material grid
do not need to have any relation to the spacing of the computational grid.
These two grids are independent.

The material grid discretizes only the interior part the domain, without
the super-grid sponge layers. The configuration is outlined in Fig. 2.1. The
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material grid is given by

xi = xmin + ihx i = 0, . . . , nx + 1 (2.1)

yj = ymin + jhy j = 0, . . . , ny + 1 (2.2)

zk = zmin + khz k = 0, . . . , nz + 1 (2.3)

where the grid spacings hx, hy, and hz are determined such that x0, y0, xnx+1, yny+1,
and znz+1 are located at the interface between the interior domain and the
super-grid sponge layer. In the depth direction, z1 is on the free surface and,
hence zmin = −hz. The point z0 is above the topography, but it will never
be used in the interpolation.

At the first and last points in each direction, (i = 0, j = 0, k = 0, nx + 1,
ny +1, and nz +1), the offsets d(ρ), d(µ), and d(λ) are fixed at zero, hence these
values are not part of the parameter vector. The total number of unknowns
for the material inversion is 3× nx × ny × nz.
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Chapter 3

Computed examples

3.1 Material grid with a single point

This test problem is defined on a domain of size 35000 × 35000 × 17000.
The material is constant with ρ = 2650, vs = 2437.56, and vp = 4630.76,
giving µ = 1.57455× 1010 and λ = 2.5335× 1010. The elastic wave equation
is discretized on a grid with spacing h = 200. A traction free boundary
condition is imposed at the boundary z = 0. All other boundaries have
super-grid sponge layers of width 2500. Waves are set off by a moment
source located at xs = ys = 17500, zs = 2000. The only non-zero element
of the moment tensor is Mxy = 1.0 × 1018. The source time function is a
Gaussian with t0 = 1.5 and ω = 4.

We consider a material grid of size 1× 1× 1, i.e., there is only one point
in the material parameterization. The total number of material parameters
is 3, i.e., ρ, µ, and λ at the single point. The outline of the material grid in
Fig. 2.1 shows that with a single point, it will be located at x = y = 17500
and z = 0.

Synthetic seismograms are computed at stations on a centered 5× 5 grid
with spacing 3000 on the surface, (z = 0). These seismograms, computed
with the constant material, are used as the measured data in the numerical
experiments. In these experiments, we initialize the values at the material
grid point by a perturbation of the constant material. Denoting the constant,
reference, density by ρ(ref), and the perturbation by d(ρ), we have

ρ = ρ(ref) + d(ρ)

at the material grid point. The notation for µ and λ are similar. The
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following five initial perturbations are considered

Name d(ρ) d(µ) d(λ)

pp10 0.1ρ(ref) 0.1µ(ref) 0.1λ(ref)

mm10 −0.1ρ(ref) −0.1µ(ref) −0.1λ(ref)

mp10 −0.1ρ(ref) 0.1µ(ref) 0.1λ(ref)

mp30 −0.3ρ(ref) 0.3µ(ref) 0.3λ(ref)

pm30 0.3ρ(ref) −0.3µ(ref) −0.3λ(ref)

The minimizing algorithm should converge to the constant material, i.e., d(ρ)

should approach zero. The Hessian at the constant material is

H =

 2.9371e− 03 −4.9563e− 10 −1.8236e− 12
−4.9563e− 10 8.7013e− 17 2.4771e− 19
−1.8236e− 12 2.4771e− 19 3.6478e− 20


The condition number of H is 8.571× 1016. The scale factors obtained from
the diagonal elements of H, and rescaled to have sρ = ρ(ref) are,

sρ = 2650 sµ = 1.54× 1010 sλ = 7.52× 1011

with these scale factors, the condition number is 107. Note that sρ and
sµ are typical sizes of ρ(ref) and µ(ref) respectively, while sλ is around 30
times larger than λ(ref). As an illustration, Fig. 3.1 shows the density on the
plane x = 17500 after 1, 2, 3, and 4 iteration with the L-BFGS method. The
initial perturbation at the single material grid point gives a hat shaped initial
material. The perturbation disappears as the minimizing iterations converges
to the constant material used to compute the synthetics. Figure 3.2 shows
the convergence histories for the cases in Table 3.1 with 10% perturbation.
The convergence from the 30% perturbation are shown in Fig. 3.3.

With the 10% perturbation, it takes 7-10 iterations to converge the misfit
down to its final value. The 30% perturbations require 17-20 iterations.

Next, we investigate the convergence of the material properties at the
material grid point. Figures 3.4 and 3.5 show the evolution of the relative
error, d(ρ)/ρ(ref) for the density and similarly for µ and λ. The perturbation
converges to zero, and as shown by the convergence curves, the material has
converged in the picture norm after around 10 iterations for the 10% pertur-
bations. With the 30% initial perturbation, around 20 iterations are needed.
Figures 3.4 and 3.5 also show that the amplitudes of the perturbations in
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Figure 3.1: Density at x = 17500 after iterations 1, 2, 3, and 4. 30 contour
levels between 2650 and 2925.

Figure 3.2: Convergence rate of problems pp10 (left), mm10 (middle), and
mp10 (right). Blue is the maximum norm of the gradient of the misfit, red
is the misfit.
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Figure 3.3: Convergence rate of problems pm30 (left), mp30 (right). Blue is
the maximum norm of the gradient of the misfit, red is the misfit.

Figure 3.4: Convergence of ρ (blue), µ (red), and λ (black) for problems pp10
(left), mm10 (middle), and mp10 (right).

ρ and µ never exceeds the size of the initial perturbation. λ, on the other
hands, have very large variation, especially for the 30% perturbation. This
is caused by the scaling factor sλ being much larger than the size of λ(ref).
The line search algorithm bases its largest allowed step length on the scale
factors, which implies that a much longer relative step is allowed for λ than
for ρ and µ.

The input file for this example contains the material specification

block vp=4630.76 vs=2437.56 r=2650

mparcart nx=1 ny=1 nz=1 init=onep-pr10.bin

meaning that the reference material is defined by the block command, and
the initial 10 percent perturbation is read from the file onep-pr10.bin. This
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Figure 3.5: Convergence of ρ (blue), µ (red), and λ (black) for problems
pm30 (left) and mp30 (right).

file was prepared externally to SW4mopt, by a Matlab script. The minimizing
algorithm was specified by the lines

mrun task=minvert mcheck=on tsoutput=on

lbfgs nvectors=3 maxit=100 tolerance=1e-12 linesearch=on

in the inputfile.

3.2 Material with sinusodial variation, 3×3×2

material grid

This test problem has the same dimensions and source as the problem in the
previous subsection. The synthetics are computed on a constant material
with an added sinusodial variation. The constant material has the properties
ρ = 2650, vs = 2679.5, and vp = 5000, leading to µ = 1.90 × 1010 and
λ = 2.82 × 1010. The amplitude of the sine perturbation is around 10% in
ρ, µ and λ. Figure 3.6 shows the density on the plane z = 1000 at the exact
minimum.

The inversion algorithm starts from the constant material as initial guess,
and iterates to find the sinusodial material variation. As an illustration of
the convergence process, the density in the plane z = 1000, with the same
contour levels are plotted in Fig. 3.7.

Just as in the case with one material grid point, the Lamé parameter λ
shows the largest variation during the iteration process. The evolution of λ
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Figure 3.6: Density on the plane z = 1000 at the exact minimum.

is displayed in Fig. 3.8, showing it out of range of the plotting contour levels
after 10, 20, and 40 iterations.

The convergence in Fig. 3.9, shows that around 200 iterations are needed
to drive down the misfit to the level of round-off. However, Figs. 3.7 and
3.8 show that 50–60 iterations give a satisfactory picture of the material,
corresponding do a misfit reduction of 4–5 orders of magnitude.

The input file for this example is given by

grid h=200 x=35000 y=35000 z=19500

time t=9 utcstart=09/10/2013:23:5:53.000

fileio verbose=1 path=run8 obspath=obs temppath=/tmp/bjorn pfs=1

supergrid gp=13 dc=.015

#

block r=2650 vs=2677.6503357897 vp=4998.11285141419

mparcart nx=3 ny=3 nz=2 init=0

#

mrun task=minvert mcheck=on

lbfgs nvectors=35 maxit=300 tolerance=1e-12 linesearch=on ihess0=scale-factors

mscalefactors rho=2650 mu=1.19e10 lambda=5.10e11

#
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Figure 3.7: Density on the plane z = 1000 after 1, 10, 20, 30, 40, 50, 60, 70,
and 80 iterations with the L-BFGS method.
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Figure 3.8: Lamé parameter λ on the plane z = 1000 after 1, 10, 20, 30, 40,
50, 60, 70, and 80 iterations with the L-BFGS method.

13



Figure 3.9: Convergence of misfit (red) and maximum norm of the gradient
of the misfit (blue) for the computation shown in Fig. 3.7.

source x=17500 y=17500 z=2000 Mxy=1 m0=1e18 t0=1.5 freq=4 type=Gaussian

#

developer cfl=1.1

#

observation x=11500 y=11500 z=0 file=sta11

observation x=14500 y=11500 z=0 file=sta21

observation x=17500 y=11500 z=0 file=sta31

....

The first four lines set up the domain and discretization size. It uses the
same syntax as the forward solver, SW4. The only additional items for the
inverse problem are the two new paths, obspath and temppath, given at
the fileio command. The obspath is the directory containing the observed
seismograms. These data are read by the solver, nothing is output into
obspath.

The temppath is a directory where temporary files associated with the
outflow boundaries are stored. In order to reconstruct the forward solution
during the backward solve, the forward solution on the outflow boundaries
needs to be saved. Each processor that holds a part of the outflow boundary,
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writes its own file to temppath. These files can become fairly large, and there
can be a lot of them. The read and write speeds to temppath will have a
major effect on the preformance of the inverse solver. Preferably, temppath
should be a directory on a disk that is local to the computational node. On
the LC sytems, the directory /tmp/username is usually a good choice, if the
files are not too large. The temporary files are deleted by SW4mopt when
they are no longer needed, however if the program crashes, files might be left
in temppath.

The next two lines,

block r=2650 vs=2677.6503357897 vp=4998.11285141419

mparcart nx=3 ny=3 nz=2 init=0

specify the material repesentation and the initial guess material. The com-
putation starts from a zero perturbation on the constant reference material
described by the block command. The material grid has 3× 3× 2 points.

The L-BFGS method is specified by

lbfgs nvectors=35 maxit=300 tolerance=1e-12 linesearch=on ihess0=scale-factors

A maximum of 300 iterations are taken, using 35 L-BFGS vectors. The initial
inverse Hessian will be computed from the scale factors. These are specified
on the mscalefactors line below. The scale factors are also used to compute
the step length in the minimization algorithm.

The source is given below the mscalefactors line. The source is specified
with exactly the same syntax as in the forward solver. Below the source com-
mand, the CFL-number is set to 1.1. In SW4mopt, the maximum allowed
CFL-number is hard coded to 1.3. By computing with a somewhat lower
CFL-number, we allow the material wave speeds to increase by (1.3-1.1)/1.1
= 18% during the minimization. SW4mopt never changes the initially com-
puted time step. However, the line search algorithm restricts the step size
of the minimizer so that the maximum CFL-limit 1.3 is always respected. If
the material makes the CFL-number getting too close to 1.3, the minimiza-
tion step length will go to zero, and the minimizer fails. In that case, the
computation has to be restarted with a smaller CFL-number.

The synthetic seismograms were prepared by the forward solver, run in
the perturbed material. The seismograms are output in USGS-format, on
files sta11.txt, sta21.txt, etc. up to sta55.txt. The synthetics are read
into SW4mopt by the commands
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observation x=11500 y=11500 z=0 file=sta11

observation x=14500 y=11500 z=0 file=sta21

observation x=17500 y=11500 z=0 file=sta31

....

etc. for all 25 stations. The synthetics were time stamped by the forward
solver. The UTC time is registered in the header of the output time series
on USGS-format. In this example, the UTC time was September 10th 2013
at 23:5:53. It is important that we specify the same start time for the inverse
solver. This is done by the command

time t=9 utcstart=09/10/2013:23:5:53.000

in the input file.
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Chapter 4

Keywords in the input file

The syntax of the input file is the same as in the forward solver, SW4. The
input file consists of a number of lines with statements

command1 parameter1=value1 parameter2=value2 ... parameterN=valueN

# comments are disregarded

command2 parameter1=value1 parameter2=value2 ... parameterM=valueM

...

Each command starts at the beginning of the line and ends at the end of
the same line. Blank and comment lines are disregarded. A comment is a
line starting with a # character. The order of the parameters within each
command makes no difference.

Parameter values are either integers (-2,0,5,...), real numbers (20.5, -0.05,
3.4e4), or strings (earthquake, my-favorite-simulation). Note that there must
be no spaces around the = signs and strings are given without quotation
marks and must not contain spaces.

A breif description of all commands is given in the following sections. The
commands marked as [required] must be present in all SW4mopt input files,
while those marked as [optional] are just that.

4.1 Material optimizer

4.1.1 The mrun command

Syntax:
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mrun task=... mcheck=... tsoutput=...

Required parameters:
None

The mrun command specifies which task to perform. The possible tasks are
given in the table below.

possible values of the task option
Option Description

minvert Perform material inversion (default)
gradtest Test gradient computation vs. a numerical

derivative
hesstest Compute the Hessian numerically
func1d Compute and output a one dimensional cut

of the misfit
func2d Compute and output a two dimensional sur-

face of the misfit
forward Run one forward solve and exit.
minvert+src11 Perform material and source inversion, 11 pa-

rameter source.
minvert+src10 Perform material and source inversion, 10 pa-

rameter source.
minvert+src9 Perform material and source inversion, 9 pa-

rameter source.
minvert+src6 Perform material and source inversion, 6 pa-

rameter source.

Further specification of the func1d, func2d tasks, e.g., which parameter to
vary, can be done with the msurf command. The generated cut/surface
is output on a file named fsurf.bin, the format of which is described in
Section ??.

The intended use of task=forward is to generate synthetic seismograms
for testing the material inversion.

mcheck=on tells the optimizer to check the computed material for rea-
sonableness, e.g., that the density and µ are positive, after each iteration.
tsoutput=on causes the time series (synthetic seismograms) to be output
after each iteration. mcheck and tsoutput are only effective when the task
is minvert.
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mrun command parameters
Option Description Type Default

task task to perform string minvert
mcheck material checking (on or off) string off
tsoutput output time series (on or off) string off

Currently, mcheck only outputs diagnostic messages, no attempt to cor-
rect the material if it is out of range is made.

4.1.2 The lbfgs command

Syntax:
lbfgs nvectors=... ihess0=... maxit=... tolerance=...

linesearch=...

Required parameters:
None

Configure the L-BFGS method for minimizing the misfit. L-BFGS will iterate
until maxit iterations are reached, or until the maximum norm of the scaled
gradient of the misfit is less than tolerance.

The option linesearch=off switches off the line search step of L-BFGS.
This is usually not stable. The default linesearch=on switches on a stan-
dard line search algoritm. However, L-BFGS is only guaranteed to be stable
if the so called Wolfe condition is satisfied. The option linesearch=wolfe

switches on the line search with additional logic to satisfy the Wolfe con-
dition. Line search with the Wolfe condition is computationally expensive,
since the gradient of the misfit has to be evaluated at least once. Therefore,
it is advisable to try the standard line search first, we have found it to work
satisfactory in many cases.

L-BFGS builds and approximation of the inverse Hessian, represented by
nvectors vectors, which can be thought of as a rank-nvectors approxima-
tion. The convergence rate is usually better for larger values of nvectors.
The method requires an initial guess for the inverse Hessian. The option
ihess0=scale-factors uses an initial guess based on the scale factors of
the problem, while ihess0=gamma uses an initial guess by an estimate of the
size of the Hessian along the search directions, given by formula (7.20) in [?].
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lbfgs command parameters
Option Description Type Default

nvectors Number of l-bfgs vectors to keep int 10
ihess0 Initial guess for inverse Hessian string gamma
maxit Maximum number of iterations int 10
tolerance Termination criterion for gradient float 10−12

linesearch Line search method (on, off, or wolfe) string on

4.1.3 The nlcg command

Syntax:
nlcg maxit=... tolerance=... linesearch=... subtype=...

maxsubit=...

Required parameters:
None

Configure the non-linear conjugate gradient (NLCG) method for minimizing
the misfit. NLCG will iterate until maxit restarts are reached, or until the
maximum norm of the scaled gradient of the misfit is less than tolerance.
CG methods are usually restarted every nth iteration, where n is the number
of unknowns. The behavior of the iterations is controlled by the two param-
eters maxit and maxsubit. maxit gives the maximum number of restarts,
and maxsubit is the number of iterations between the restarts. By default
maxsubit is set to n.

The option linesearch=off switches off the line search step in NLCG.
The default linesearch=on switches on a standard line search algoritm. The
initial step size is computed by approximating the minimization functional
by a quadratic surface.

The subtype option makes it possible to specify the Fletcher-Reeves or
the Polak-Ribière variants of the NLCG. The Polak-Ribière algorithm forces
a restart more often than Fletcher-Reeves. With subtype=polak-ribiere,
maxit needs to be set large enough to allow for the additional restarts.
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nlcg command parameters
Option Description Type Default

maxit Maximum number of iterations int 10
tolerance Termination criterion for gradient float 10−12

linesearch Line search method (on or off) string on
subtype fletcher-reeves or polak-ribiere string polak-ribiere
maxsubit Number of subiterations in CG int # unknowns

4.1.4 The mscalefactors command

Syntax:
mscalefactors rho=... mu=... lambda=... file=... misfit=...

Required parameters:
None

Introducing scale factors will improve the convergence rate of the minmizer,
by reducing the condition number of the Hessian of the misfit. For quadratic
problems, the scale factors form a diagonal pre-conditioning matrix. There
is one scale factor for each unknown. Ideally, the scale factor for the ith
unknown, xi, should be 1/

√
Hii, where Hii is the ith diagonal element of

the Hessian. The file= option specifies a file name, from which the scale
factors are read. The number of scale factors on the file should be equal
to the number unknown parameters. The format of the file is described in
Section ??.

If the Hessian is not known, an alternative is to set the scale factors to
reference sizes of the parameters. If the material parameterization is made
such that each parameter is identifiable with one of the material properties,
ρ, µ, or λ, the options rho=, mu=, and lambda= can be used to specify three
different scales. These scale factors are used throughout for all unknowns of
the respective type.

The misfit= is a factor that modifies the input scale factors. It is based
on the observation that the scale of 1/

√
Hii, with H = ∂2f/(∂x2

i ), is actually
xr/

√
fr, where xr is the scale of the unknown xi, and fr is the scale of the

objective function. All input scale factors will be divided by the square root
of the value of the misfit parameter. The condition number of the Hessian
is not affected by multiplying all factors by a constant, but the multiplier
will affect the maximum step length, and is currently needed to sometimes
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reduce the allowed step size. This is a temporary measure that should be
removed, once the line search algorithm has been improved.

mscalefactors command parameters
Option Description Type Default

rho Density scale factor float 1
mu Scale of Lamé parameter µ float 1
lambda Scale of Lamé parameter λ float 1
file Name of file containing scale fac-

tors
string None

misfit Multiplier for scale factors float 1

4.1.5 The mfsurf command

Syntax:
mfsurf var=... i=... j=... k=... pmin=... pmax=...

npts=... var2=... i2=... j2=... k2=... pmin2=...

pmax2=... npts2=...

Required parameters:
None

The command mfsurf controls the selections for mrun task=func1d and
mrun task=func2d. The command assumes that the material parameters
can be interpreted as values of ρ, µ, or λ on a logically rectangular grid, for
example, when using material parameterization by the mparcart command.

var=, i=, j=, k= specify one parameter. For example the density at the
point with index (3, 2, 4) in the coarse material grid defined by mparcart, is
selected by

mfsurf var=rho i=3 j=2 k=4

The command

mfsurf var=rho i=3 j=2 k=4 npts=30 pmin=-250 pmax=250

specifies the misfit as function of this parameter on the interval [-250,250],
discretized by 30 points. To compute and save the specified function on a
file, run SW4mopt with mrun task=func1d.

The second set of input variables, var2=, i2=, etc. are used for the
second dimension when a two dimensional misfit surface is specified with
mrun task=func2d.
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mfsurf command parameters
Option Description Type Default

var variable (rho, mu, or lambda) string rho
i i-index int 1
j j-index int 1
k k-index int 1
pmin lower parameter limit float -300
pmax upper parameter limit float 300
npts Number of discretization points int 10
var2 variable (rho, mu, or lambda) string rho
i2 i-index int 1
j2 j-index int 1
k2 k-index int 2
pmin2 lower parameter limit float -300
pmax2 upper parameter limit float 300
npts2 Number of discretization points int 10

4.2 Material parameterization [required]

Several ways to parameterize the material will be tried. Currently, only pa-
rameterization through a coarser grid is possible, by the mparcart command.

4.2.1 mparcart

Syntax:
mparcart nx=... ny=... nz=... init=...

Required parameters:
nx, ny, nz, init

The command mparcart defines the material by interpolation from a coarse
grid. The coarse grid stores the offsets in ρ, µ and λ from a reference material.
The init parameter is either 0, meaning that all offsets are initialized to
zero, or the name of a file with previously computed offsets. If a file name
is specified, the material is initialized with the values stored on the file.
The material optimizer stores the current values of the offsets on the file
parameters.bin after each iteration. Hence, a previous computation can be
restarted by specifying init=parameters.bin.
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mparcart command parameters
Option Description Type Default

nx Number of points in x int none
ny Number of points in y int none
nz Number of points in z int none
init initial guess, file name or 0 string none

Currently, the complete material grid is stored in each processor. For
very large problem sizes, the amount of memory can be a limitation.

4.3 Output

4.3.1 mimage

Syntax:
mimage x=... y=... z=... cycle=... cycleInterval=...

file=... mode=... precision=...

Required parameters:
Location of the image plane (x, y, or z)
Time for output (cycle, or cycleInterval)

Material images are similar to the image command of SW4. The main dif-
ference is that mimage defines image output related to the iterations of the
minimization algorithm. In the cycle and cycleInterval options, one cycle
is interpreted as one iteration of the minimization algorithm. The options
x, y, z, file, mode, and precision are identical to the options with the
same names in the image command. mimage only outputs images of material
properties. The supported modes are given in the table below.
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mimage mode options
Value Description

rho Density
lambda 1st Lamé parameter

mu 2nd Lamé parameter (shear modulus)
p Compressional wave speed
s Shear wave speed

gradrho Gradient of misfit w.r.t. density
gradlambda Gradient of misfit w.r.t. 1st Lamé parameter

gradmu Gradient of misfit w.r.t. 2nd Lamé parameter
gradp Gradient of misfit w.r.t. Compressional wave speed
grads Gradient of misfit w.r.t. Shear wave speed

Note, the misfit gradients are computed with respect to the material proper-
ties at each grid point. When using a material parameterization, the misfit
with respect to the parameters is given by the chain rule as a combination
of these gradients with the derivative of the parameterization.

mimage command parameters
Option Description Type Default

cycle Minimizer cycle to output image (≥ 0) int 0
cycleInterval Minimizer cycle interval to output a series of

images (≥ 1)
int 1

file File name header of image string mimage
precision Floating point precision for saving data (float

or double)
string float

mode The field to be saved string rho
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Abstract We consider the inverse problem of estimating the parameters describing the source
in a seismic event, using time-dependent ground motion recordings at a number of receiver
stations. The inverse problem is defined in terms of a full waveform misfit functional, where
the objective function is the integral over time of the weighted L2 distance between observed
and synthetic ground motions, summed over all receiver stations. The misfit functional is
minimized under the constraint that the synthetic ground motion is governed by the elastic
wave equation in a heterogeneous isotropic material. The seismic source is modeled as a
point moment tensor forcing in the elastic wave equation. The source is described by 11
parameters: the six unique components of the symmetric moment tensor, the three com-
ponents of the source location, the origin time, and a frequency parameter modeling the
duration of the seismic event. The synthetic ground motions are obtained as the solution
of a fourth order accurate finite difference approximation of the elastic wave equation in a
heterogeneous isotropic material. The discretization satisfies a summation-by-parts (SBP)
property that ensures stability of the explicit time-stepping scheme. We use the SBP property
to derive the discrete adjoint of the finite difference method, which is used to efficiently
compute the gradient of the misfit. A new moment tensor source discretization is derived
that is twice continuously differentiable with respect to the source location. The differentia-
bility makes the Hessian of the misfit a continuous function of all source parameters. We
compare four different gradient-based approaches for solving the constrained minimization
problem; two non-linear conjugate gradient methods (Fletcher–Reeves and Polak–Ribière),
and two quasi-Newton methods (BFGS and L-BFGS). Because the Hessian of the misfit
has a very large condition number, the parameters must be scaled before the minimization
problem can be solved. Comparing several scaling approaches, we find that the diagonal
of the Hessian provides the most reliable scaling alternative. Numerical experiments are
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presented for estimating the source parameters from synthetic ground motions in two differ-
ent three-dimensional models; one in a simple layer over half-space, and one using a fully
heterogeneous material. Good convergence properties are demonstrated in both cases.

1 Introduction

The accurate estimation of seismic source parameters is an important undertaking of modern
seismology [15]. Seismic events (e.g. earthquakes, mine collapses, or explosions) generate
waves that propagate through the earth and can be recorded by seismometers. These instru-
ments measure the time-dependent ground motion at fixed locations, either on the surface,
or in boreholes. Different seismic events generate waves that have different characteristics
[1], and the ground motion recordings can be used to estimate the seismic source properties,
such as location, source geometry, and source duration. One important application of source
estimation is to distinguish between different types of events, i.e., an earthquake, implosion,
or explosion. For earthquakes, information about location and geometry (source mechanism)
can be used to analyze fault systems and tectonic processes. Source estimation is also becom-
ing increasingly important in monitoring hydraulic fracturing. This technique is used to create
fractures in rock such that entrapped hydro-carbons can be released and extracted [16]. A
micro-seismic (very small magnitude) event occurs every time the rock fractures. Source
estimation can be used to locate these event and in principle also characterize the type of
fracture [33].

In this article, we consider seismic source estimation as a minimization problem con-
strained by the isotropic elastic wave equation subject to appropriate boundary and initial
conditions. The objective is to find the source parameters that minimize the distance between
the time-dependent recorded and synthetic wave forms. This general approach is known
as full waveform inversion (FWI). The technique was first introduced by Lailly [19] and
Tarantola [35]. Since then FWI has become an important tool in global seismology, where
recordings of long period waves from larger earthquakes can be used to infer large scale
material properties of the earth [11,37,38]. Kim et al. [15] used FWI to estimate the moment
tensor and source depth from earthquake ground motion observations. FWI can also be used
to build material models for geophysical exploration applications, see Virieux and Operto
[40] and the references therein.

To introduce FWI for source estimation, we assume that the motion of the ground is
observed at the fixed spatial locations xr , r = 1, . . . , R, and that three orthogonal compo-
nents of the displacement are measured as functions of time at all recording stations. We
denote the measurements by dr (t). Let u(x, t) be the synthetic displacement field governed
by the elastic wave equation. The synthetic displacement depends implicitly on the source
parameters, which we collect in the P-dimensional real-valued vector p. Various misfit func-
tionals have been proposed, see Tromp et al. [38] and Tape et al. [34]. Here we define the
continuous minimization problem through the misfit functional

Xc(p) = 1

2

R∑

r=1

T∫

t=0

s(t) |u(xr , t)− dr (t)|2 dt, (1)

where s(t) ≥ 0 is a weight function and |w| denotes the magnitude of the vector w ∈ �3.
Note that the misfit is a non-negative real scalar functional of u, which measures the distance
between the time-dependent wave forms u(xr , t) and dr (t) in the time interval 0 ≤ t ≤ T .
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Hence, Xc = 0 implies perfect agreement between the wave forms at all recording stations,
i.e., u(xr , t) = dr (t) for 0 ≤ t ≤ T and r = 1, 2, . . . , R.

We focus on smaller seismic events (magnitude Mw < 5), where the source can be
modeled as a point moment tensor forcing in the elastic wave equation,

f(x, t; p) = g(t)M∇δ(x − xs). (2)

Here, ∇δ(x) is the gradient of the Dirac distribution. The source time function g(t; t0, ω0) =
g̃(t−t0, ω0) is assumed to depend on two parameters; a time shift t0 and a frequency parameter
ω0 that controls the duration of the event. The source is located at xs = (xs, ys, zs) and the
elements of the symmetric matrix M are denoted

M =
⎛

⎝
mxx mxy mxz

mxy myy myz

mxz myz mzz .

⎞

⎠

Under these assumptions the forcing function f , and the synthetic displacement u, depend
on P = 11 parameters,

p = (xs, ys, zs, mxx , mxy, mxz, myy, myz, mzz, t0, ω0). (3)

Source estimation by minimizing the full waveform misfit (1) can give unreliable results
if the actual material properties are poorly represented by the material model. For example, if
the wave speed between the source and one receiver is too high, the synthetic signal will arrive
too early at this receiver, making it difficult to match the observed wave form. Further com-
plications occur if the isotropic elastic wave equation does not govern the observed seismic
ground motion, for example due to non-linear, anisotropic, or visco-elastic soil behaviors.
However, these topics are beyond the scope of the present paper. In the following we assume
that the material model is sufficiently accurate and only invert for the source parameters. We
remark that some errors in the material model can be masked out by the window function
s(t) in the misfit functional (1). This approach can be generalized to use different window
functions for each component and receiver [15]. The observations can also be shifted to
compensate for arrival time errors [22].

Many different optimization methods could be used for minimizing the misfit functional.
For example, Newton-type methods that use both the gradient and the Hessian, or direct search
methods that require neither gradient, nor Hessian information. Our motivation for not using
a Newton method is that the Hessian is too expensive to evaluate in every iteration. Direct
search methods are very robust, but can be computationally inefficient unless the number of
parameters is small, see Kolda et al. [17] for a review. Optimization methods that use the
gradient, but not the Hessian, provide a computationally efficient alternative. In particular, we
consider quasi-Newton methods and nonlinear conjugate gradient methods (NLCG). Quasi-
Newton methods use the gradient and an approximate Hessian. These methods can be made
computationally efficient by approximating the Hessian by the positive definite secant update,
see Dennis and Schnabel [7] or Nocedal and Wright [25] for details. Here we consider the
BFGS and the L-BFGS methods. The latter is a limited storage variant of BFGS, where only
a small part of the approximate Hessian is retained. This approach is particularly suitable
for problems with a large number of parameters, where the full Hessian is impractical or
impossible to store. Another interesting class of optimization methods are the non-linear
conjugate gradient methods [23]. In this paper we consider the Fletcher–Reeves and the
Polak–Ribière variants.

It has been known for a long time that the gradient of a functional such as (1), which is
constrained by a partial differential equation (PDE), can be computed by solving the adjoint
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PDE. The method of Lagrange multipliers can be used to derive the adjoint PDE, which
often is discretized by the same method as the original PDE. Early examples of the adjoint
approach include Lions [21], Pironneau [29], and Jameson [13]. Some applications of the
adjoint technique to problems from geophysics are given in Plessix [30].

To allow for general heterogeneous elastic materials, we discretize the elastic wave equa-
tion by a fourth order accurate finite difference method and solve it numerically. We remark
that our discretization is fundamentally different from the popular staggered grid method
[12,20,39], which discretizes the elastic wave equation in first order velocity-stress formula-
tion. Our method uses a node based discretization of the elastic wave equation in second order
displacement formulation and is fourth order accurate both in space and time. It satisfies the
principle of summation by parts (SBP) for heterogeneous materials on Cartesian grids, see
Sjögreen and Petersson [31]. This property ensures that the method is energy stable and that
the discretization can be generalized to curvilinear coordinates [3]. Hence, it is possible to
account for realistic topography by constructing a boundary conforming curvilinear grid. The
ability to accurately model free surfaces on realistic (non-planar) topography makes our finite
difference method a very attractive alternative to the recently developed finite element [5],
spectral element [18], discontinuous Galerkin [8,14], and finite volume [9] discretizations
on unstructured grids.

In our approach, we first discretize the elastic wave equation and the misfit functional,
and then optimize the source parameters to minimize the discrete misfit. Numerical artifacts
due to truncation errors can therefore only enter through the discretization of the elastic wave
equation. In particular, there are no additional numerical errors due to the discretization
of the adjoint PDE, which may otherwise be the case if the continuous misfit functional
is minimized and the elastic wave equation and its adjoint are discretized independently.
Because the curvilinear formulation leads to lengthy algebraic formulas that can obscure
the presentation, we only describe the source estimation technique for the case of a flat free
surface. The generalization to the curvilinear case is straightforward, but rather technical.

Our first main result is presented in Sect. 2. Here we use the SBP property to derive the
adjoint of the discretized elastic wave equation and we prove the adjoint relation between the
solutions of the discretized elastic and adjoint wave equations and their forcing functions.
This relation is used in Sect. 3 to derive an efficient approach for computing the gradient
and Hessian of the discrete misfit. Note that a gradient-based minimization method is only
guaranteed to converge if the Hessian is a continuous function of all parameters. For this
reason the synthetic displacement must be twice continuously differentiable with respect to
all parameters. This implies that the forcing in the discrete elastic wave equation must have
the same continuity. The forcing term (2) is singular in space and is discretized by imposing
a number of moment conditions, which guarantee the accuracy of the solution away from the
singularity [26]. The discretization results in a grid function where the coefficients depend on
the source location. Our second main contribution is presented in Sect. 4, where we develop
a new spatial discretization of the singular source function (2). This source discretization is
designed to be compatible with a fourth order accurate difference scheme, and to be twice
continuously differentiable with respect to the source location.

The sizes of the parameters in the source estimation problem span many orders of mag-
nitude. In SI-units, xs is of the order O(104), the moment tensor components mi j are of the
order O(1015)−O(1018). The start time t0 and the frequency parameter ω0 are both between
O(1) and O(10). Because there is such a large difference in size between the smallest and
largest parameter values, the minimization problem is very poorly scaled and the condition
number of the Hessian is very large. Scaling is important for both the quasi-Newton and
the NLCG methods. For the quasi-Newton methods, the scaling provides an approach for
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calculating the initial approximate Hessian. The NLCG methods converge optimally when
the scaled Hessian has a condition number of one. Our third main contribution is presented
in Sect. 6, where we perform numerical experiments on synthetic problems. We investigate
how different scaling strategies affect the condition number of the scaled Hessian, and the
convergence rate of the minimization algorithm. We demonstrate that a scaling based on the
diagonal of the Hessian provides the most robust alternative of the options considered here.

The remainder of this article is organized in the following way. Section 2 gives an overview
of our fourth order accurate finite difference discretization, defines the discrete source esti-
mation problem, derives the adjoint of the discretized elastic wave equation, and proves the
adjoint property. Section 3 describes how the adjoint property can be used to compute the
gradient and Hessian of the discrete misfit. The spatial discretization of the singular forcing
function (2) is described in Sect. 4. Section 5 discusses how an initial guess for the source
parameters can be obtained. We perform numerical experiments with the complete source
inversion algorithm on synthetic test problems in Sect. 6. Conclusions are given in Sect. 7.

2 The Discretized Problem

In the following we assume that the displacement field u(x, t) satisfies the elastic wave
equation in the three-dimensional domain �, subject to initial and boundary conditions.
Here, the boundary is denoted � = �1 ∪ �2. The displacement is governed by

ρut t = ∇ · τ (u)+ f(x, t; p), x ∈ �, 0 ≤ t ≤ T,
u(x, 0) = 0, x ∈ �, t = 0,

ut (x, 0) = 0, x ∈ �, t = 0,
n · τ (u) = 0, x ∈ �1, 0 ≤ t ≤ T,

u = 0, x ∈ �2, 0 ≤ t ≤ T,

(4)

where ρ is the density and f is the moment tensor forcing (2). We further assume that the
earth can be described as a heterogeneous isotropic elastic material. The stress tensor τ (u)
is then related to the displacement gradient through

τ (u) = λ div(u) I + μ (∇u + ∇uT ), (5)

where λ(x) and μ(x) are the first and second Lamé parameters of the material.

2.1 A Self-Adjoint Fourth Order Accurate Finite Difference Scheme

Consider the elastic wave Eq. (4) on the box shaped domain (x, y, z) ∈ [0, xmax ] ×
[0, ymax ] × [0, zmax ], and the time interval 0 ≤ t ≤ T . Let the computational grid be

xi = (i − 1)h, y j = ( j − 1)h, and zk = (k − 1)h,

where h > 0 is the grid size and i, j , and k are integers. The domain sizes are chosen such
that xNx = xmax , yNy = ymax , and zNz = zmax . We use ghost points outside the domain to
impose the boundary conditions. Time is discretized on the grid tn = n�t , where �t > 0 is
the fixed time step and n is an integer. The time step is chosen to satisfy the CFL stability
condition, and tM = M�t = T where M > 0 is the total number of time steps.

The numerical approximation of the displacement vector u(x, t) at grid point (i, j, k)
and time level tn is denoted by un

i, j,k = (un
i, j,k, v

n
i, j,k, w

n
i, j,k). To improve readability, we

occasionally suppress the subscript or superscript on u, for example by writing un for un
i, j,k .
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When convenient we also use the vector index notation i = (i, j, k) to indicate a spatial grid
point index.

In Sjögreen and Petersson [31], we developed a fourth order accurate symmetric dis-
cretization of the divergence of the stress tensor (5). This operator, denoted by Lh(u), has
the property that

(v,Lh(u))h = (Lh(v),u)h, (6)

for any two grid functions u and v that satisfy the discretized boundary conditions

B(u)i, j,k = 0, xi, j,k ∈ �. (7)

The scalar product in (6) is defined by

(v,u)h = h3
Nz∑

k=1

Ny∑

j=1

Nx∑

i=1

ai, j,k〈vi, j,k,ui, j,k〉, (8)

where ai, j,k are positive weights determined from the summation by parts property of Lh(u)
that is needed to enforce (6). Also, 〈u, v〉 = ∑3

q=1 u(q)v(q), is the inner product between
real-valued vectors with three components. Using this notation, the magnitude of u satisfies
|u|2 = 〈u,u〉.

We consider boundary operators B that either discretize free surface or Dirichlet boundary
conditions,

B(un)i, j,k =
{

B(un)i, j,kni, j,k, Free surface,

un
i, j,k, Dirichlet.

Here, B(u) is a special difference approximation of the stress tensor on the boundary that
matches Lh(u)i, j,k such that (6) is satisfied. The vector ni, j,k is the outward boundary normal.
A detailed description of the interior and boundary discretizations can be found in [24,31].

We discretize the elastic wave Eq. (4) using the fourth order accurate difference method
described in Sjögreen and Petersson [31]. This method computes the displacement field
un, n = 1, 2, . . . ,M , starting from initial data u−1 and u0, as is outlined in Algorithm 1.

Algorithm 1 4th order accurate predictor–corrector scheme for the elastic wave equation.
1: procedure Forward(u,F)
2: Initial conditions: u0 = 0 and u−1 = 0
3: for n = 0, 1, . . . ,M − 1 do
4: Predictor step:

u∗ = 2un − un−1 + �2
t
ρ

(
Lh(u

n)+ F(tn; p)
)

5: Impose boundary condition (7) on u∗ to define its ghost point values
6: Acceleration: vn = (

u∗ − 2un + un−1)
/�2

t
7: Corrector step:

un+1 = u∗ + �4
t

12ρ

(
Lh(v

n)+ Ft t (tn; p)
) + 1

ρ
SG (u

n − un−1)

8: Impose boundary condition (7) on un+1 to define its ghost point values
9: end for
10: end procedure
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Note that the grid function F(t; p) in this algorithm represents a discretization of the singular
source term f(x, t; p) in the elastic wave Eq. (4). This discretization will be described in
detail in Sect. 4.

We use the super-grid modeling method [2,27] for reducing reflections from far-field
boundaries. We prefer this approach over the well-known perfectly matched layer (PML)
technique [4]. Even though the PML technique has been very successful for Maxwell’s
equations and the acoustic wave equation, it is difficult to design a robust PML for the time-
dependent elastic wave equation. Here, heterogeneous material properties and free surface
boundary conditions can cause instabilities. In fact, a negative stability result was established
by Skelton et al. [32], who showed that growing, back propagating, modes can exist in the
PML for a layered elastic material, thereby making the PML equations ill-posed.

In the super-grid method, a coordinate transformation is used to map a very large physical
domain to a significantly smaller computational domain, where the elastic wave equation
is solved numerically on a regular grid. To damp out waves that become poorly resolved
because of the coordinate transformation, a high order dissipation operator is added in layers
near the boundaries of the computational domain. In our implementation, the dissipation
operator (denoted by SG(u) in Algorithm 1) is consistent with

−γ h4�t

(
φ(x)(x)(ρσ (x)(x)uxxt )xx +φ(y)(y)(ρσ (y)(y)uyyt )yy + φ(z)(z)(ρσ (z)(z)uzzt )zz

)
.

The coordinate transformation enters through the one-dimensional positive grid stretching
functions φ(x), φ(y), and φ(z). These functions are equal to one in the interior of the compu-
tational domain, and decrease monotonically to a small value, 0 < εL � 1, at the far-field
boundaries. The one-dimensional, non-negative, taper functions σ (x), σ (y), and σ (z), control
the local strength of the damping. They are zero in the interior of the domain and increase
monotonically to unity at the far-field boundaries. The constant γ > 0 controls the overall
strength of damping. The computational domain is terminated by homogeneous Dirichlet
boundary condition at the far-field boundaries, such that the dissipation operator satisfies the
SBP relation

(v,SG(u))h = (SG(v),u)h, (9)

for all grid functions that satisfy the boundary conditions. One can prove by energy estimates
that the super-grid technique leads to a stable numerical method with decreasing energy. The
proof holds for heterogeneous material properties and a free surface boundary condition on
one side of the domain. Numerical experiments show that the artificial reflections can be
made extremely small by making the super-grid layers sufficiently wide, see Petersson and
Sjögreen [27] for details.

2.2 The Discrete Source Estimation Problem

A straightforward generalization of the continuous formula (1) leads to the discrete misfit
functional

X (p) = 1

2

R∑

r=1

M−1∑

n=0

s(tn)|un
ir − dr (tn)|2. (10)

As in the continuous problem, s(tn) ≥ 0 is a weight function. We assume that all recording
stations coincide with grid points, i.e., xr = xir for some vector index ir = (ir , jr , kr ).
Furthermore, the observed displacements dr (t) are assumed to have already been filtered in
time such that they only contain motions that can be captured on the computational grid.
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Similar to the continuous case, the displacements at the recording stations depend implic-
itly on the parameter vector p in the discretized forcing function F. Given the source parame-
ters p, we can use Algorithm 1 to calculate the solution of the elastic wave equation, which
then can be inserted into (10) to evaluate the discrete misfit X (p). Hence, the discrete source
estimation problem can be stated as the constrained minimization problem,

min X (p), un is calculated by Algorithm 1 with forcing F(tn; p).

2.3 The Adjoint Wave Equation

An efficient approach for computing the gradient of the misfit uses the adjoint wave field,
κn

i . The adjoint wave field satisfies the adjoint of the discretized elastic wave equation. Let
the adjoint equation have the source term G(tn). A method for calculating κ , starting from
terminal data κ M and κ M−1, and stepping backward in time is outlined in Algorithm 2.

Algorithm 2 The adjoint of the 4th order scheme for the elastic wave equation.
1: procedure Adjoint(κ,G)
2: Terminal conditions: κ M−1 = 0 and κ M = 0
3: for n = M − 1,M − 2, . . . , 1 do
4: Predictor step:

κ∗ = 2κn − κn+1 +�2
t

Lh(κ
n)

ρ
(11)

5: Impose boundary condition (7) on κ∗ to define its ghost point values
6: Compute acceleration: ζ n = (

κ∗ − 2κn + κn+1)
/�2

t
7: Corrector step:

κn−1 = κ∗ + �4
t

12

Lh(ζ
n)

ρ
+ �2

t
ρ

G(tn)− 1

ρ
SG (κ

n+1 − κn), (12)

8: Impose boundary condition (7) on κn−1 to define its ghost point values
9: end for
10: end procedure

The adjoint property is made precise in the following theorem.

Theorem 1 Let F (with second time derivative Ft t ) be the source term in the discretized
elastic wave equation, and use Algorithm 1 to calculate u. Furthermore, let G be the source
term in the adjoint wave equation and use Algorithm 2 to calculate κ (with acceleration ζ ).
Then the grid functions u and κ are adjoint in the sense that

M−1∑

n=0

(
Gn,un)

h =
M−1∑

n=0

(
κn,Fn + �2

t

12
Fn

tt

)

h
+ �2

t

12

M−1∑

n=0

(
ζ n,Fn)

h . (13)

Proof See “Appendix 1”.

3 Minimizing the Misfit

We consider two different classes of gradient-based methods for minimizing the discrete
misfit; quasi-Newton methods and non-linear conjugate gradient (NLCG) methods.
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A NLCG method generalizes the conjugate gradient method to non-quadratic problems
[23]. In this paper, we consider the Fletcher–Reeves and Polak–Ribière variants. Precondi-
tioning can be used to improve the convergence properties of NLCG methods and is often
necessary to make these methods practically useful. The preconditioning corresponds to
the change of variables, p̂ = Sp, where S is a non-singular matrix. To introduce the pre-
conditioner, we first formulate the minimization algorithm in the scaled variables, and then
transform it back to the original variables. Algorithm 3 shows the preconditioned Fletcher–
Reeves NLCG method with m restarts, and where the parameter vector p has P components.
Note that Fletcher–Reeves is restarted every Pth iteration.

Algorithm 3 The preconditioned Fletcher–Reeves algorithm. Here, ∇Xk = ∇X (pk).
1: procedure Precond- Fletcher- Reeves(p0)
2: for r = 1, 2, . . . ,m do
3: Initial search direction: q0 = −(ST S)−1∇X (p0)
4: for k = 0, 1, . . . , P − 1 do
5: Line search: find steplength αk that minimizes X (pk + αkqk )
6: Next parameter vector: pk+1 = pk + αkqk
7: Compute βk : (Polak–Ribière: use (14))

βk = ∇X T
k+1(S

T S)−1∇Xk+1

∇X T
k (S

T S)−1∇Xk

8: Polak–Ribière: if βk ≤ 0, set p0 = pk+1 and goto 3
9: Next search direction: qk+1 = −(ST S)−1∇X (pk+1)+ βkqk
10: if ||S−1∇Xk+1||∞ < θ then
11: p0 = pk+1
12: return
13: end if
14: end for
15: Initial guess for next outer iteration p0 = pP
16: end for
17: end procedure

The algorithm terminates after all restarts have been completed, or when the maximum
norm of the scaled gradient, ‖S−1∇Xk‖, is smaller than the tolerance θ, 0 < θ � 1. In
practice we often use θ = 10−12. The algorithm is given for a general preconditioning
matrix S. When S is diagonal, ST S = S2.

The Polak–Ribière variant of the NLCG method is obtained by replacing the formula for
βk (line 7 in Algorithm 3) by

βk = ∇X T
k+1(S

T S)−1(∇Xk+1 − ∇Xk)

∇X T
k (S

T S)−1∇Xk
. (14)

This method is restarted every Pth iteration and whenever βk becomes zero or negative.
The preconditioned NLCG methods converges faster when the condition number of the

scaled Hessian matrix is smaller. The scaled Hessian has elements Ĥi, j = ∂2X/∂ p̂i∂ p̂ j . Let
H be the unscaled Hessian. In matrix notation, we have

Ĥ = S−T H S−1, Hi, j = ∂2X
∂pi∂p j

,

where S−T denotes the transpose of the inverse of the scaling matrix S.
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Both the BFGS and L-BFGS methods use a Newton-style update step

pk+1 = pk − H̃−1
k ∇Xk,

where H̃k is the approximation of the Hessian, which is updated along with pk . We refer
to [25] for the precise update formula. No scaling is needed for these methods, since the
Newton-style update step is scale invariant. However, both the BFGS and L-BFGS methods
require an initial guess for the approximate Hessian, H̃0. Here we use H̃0 = ST S, which
makes S−T H̃0S−1 = I , i.e., its scaled counterpart equals the identity matrix.

For many of the optimization algorithms considered here, convergence can not be guar-
anteed unless the Hessian exists and is a continuous function of the parameter vector, p.
In other words, the misfit functional X (p) must be twice continuously differentiable with
respect to p. It is straightforward to see that the displacement field depends linearly on the
matrix elements of M. Hence u and thereby X are infinitely differentiable with respect to
the elements of M. We assume that the time function depends on t0 through a time shift,
g(t; t0, ω0) = g̃(t−t0;ω0). Because the source term F enters into the finite difference scheme
with two time derivatives (see Algorithm 1), a requirement for the Hessian to be continuous
is that g̃(t;ω0) is four times differentiable with respect to t and twice differentiable with
respect to ω0. In Sect. 4, we derive a spatial discretization of the moment tensor source term
that gives X the required regularity with respect to the source location, xs .

A crucial component of the NLCG methods is the line search algorithm, which seeks to
minimize X (pk + αqk) with respect to the step length α, see line 5 of Algorithm 3. Line
search is also performed in the BFGS and L-BFGS methods, where the search direction is
given by qk = −(H̃k)

−1∇Xk . For both types of methods, we use backtracking algorithm
A6.3.1 from Dennis and Schnabel [7].

For the NLCG methods, the initial step size αs is taken from the linear conjugate gradient
algorithm, which assumes that X (p) is quadratic in p. From that approximation follows

αs = − ∇X T
k qk

qT
k Hkqk

. (15)

Here, the Hessian is evaluated at pk , i.e., Hk = H(pk). In Sect. 3.2, we present an algorithm
that evaluates qT

k Hkqk by solving one additional wave equation.

3.1 The Gradient of the Misfit

Straightforward differentiation of (10) gives

∂X
∂p j

=
R∑

r=1

M−1∑

n=0

s(tn)

〈
un

ir − dr (tn),
∂un

ir

∂p j

〉
. (16)

Note that the material properties ρ, μ, and λ do not depend on p j . By differentiating the
difference scheme for u with respect to p j , we see that ∂u/∂p j can be calculated with the
same finite difference scheme as is used for computing u, if the source term F is replaced by
∂F/∂p j . However, to compute the gradient of X with this technique, it would be necessary
to solve the elastic wave equation with 11 different forcing functions, where each forcing
corresponds to one component of ∂X/∂p j .
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A more efficient way of computing the gradient of the misfit is based on solving the adjoint
wave equation. In this approach, we define the adjoint source in (12) as

Gn
i =

R∑

r=1

s(tn)
(
un

ir − dr (tn)
) δi,ir

h3ai
, (17)

where ai is the weight coefficient in the scalar product (8) and

δi,j =
{

1, i = j,

0, otherwise.

Inserting (17) into (16) shows that the gradient of the misfit can be written

∂X
∂p j

=
M−1∑

n=0

(
Gn,

∂un

∂p j

)

h

.

Because ∂u/∂p j satisfies the forward finite difference scheme with source term ∂F/∂p j , we
can apply Theorem 1 to obtain

∂X
∂p j

=
M−1∑

n=0

(
κn,

∂Fn

∂p j
+ �2

t

12

∂Fn
tt

∂p j

)

h

+ �2
t

12

M−1∑

n=0

(
ζ n,

∂Fn

∂p j

)

h

. (18)

Equation (18) allows us to calculate all components of the gradient from the adjoint wave
field κn

i . The scalar products involving the gradients of F can be assembled during the time
stepping of the adjoint scheme. Because the forcing function F is non-zero only at a few
grid points near xs , the computational cost of evaluating these scalar products is insignificant
compared to the cost of solving the adjoint wave equation.

3.2 Calculating the Hessian and qT Hq

The Hessian matrix plays an important role in gradient-based optimization. For example,
the condition number of the Hessian governs the convergence rate of the conjugate gradient
algorithm, and the Hessian can be used to construct a preconditioner.

To compute the Hessian, we differentiate (16) with respect to pk to obtain

Hk, j := ∂

∂pk

(
∂X
∂p j

)
=

R∑

r=1

M−1∑

n=0

s(tn)
∂

∂pk

〈
un

ir − dr (tn),
∂un

ir

∂p j

〉

=
R∑

r=1

M−1∑

n=0

s(tn)

〈
∂un

ir

∂pk
,
∂un

ir

∂p j

〉
+

R∑

r=1

M−1∑

n=0

s(tn)

〈
un

ir − dr (tn),
∂2un

ir

∂pk∂p j

〉
.

(19)

We decompose the Hessian into two parts, H = H (1) + H (2), where

H (1)
k, j :=

R∑

r=1

M−1∑

n=0

s(tn)

〈
∂un

ir

∂pk
,
∂un

ir

∂p j

〉
, (20)

H (2)
k, j :=

R∑

r=1

M−1∑

n=0

s(tn)

〈
un

ir − dr (tn),
∂2un

ir

∂pk∂p j

〉
. (21)
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By noting the similarities between (16) and (21), we see that the matrix H (2) can also be
computed using the adjoint wave field κ . We arrive at the formula

H (2)
k, j =

M−1∑

n=0

(
κn,

∂2Fn

∂pk∂p j
+ �2

t

12

∂2Fn
tt

∂pk∂p j

)

h

+ �2
t

12

M−1∑

n=0

(
ζ n,

∂2Fn

∂pk∂p j

)

h

. (22)

Note that this formula is similar to (18), except that the first derivative of the forcing has been
replaced by its second derivative. Hence, we can obtain H (2) by accumulating additional
scalar products during the time stepping of the adjoint wave equation. Therefore, the compu-
tation of H (2) does not require any additional elastic wave equations to be solved. However,
calculating H (1) requires the quantities ∂un

i /∂p j to be known, which satisfy the elastic wave
equation with the forcing term ∂F/∂p j . Hence, an additional 11 elastic wave equations must
be solved to assemble the matrix H (1).

The higher computational cost of calculating the Hessian makes it prohibitively expensive
to evaluate in each iteration of Algorithm 3. However, as we will see below, it is highly
advantageous to compute the Hessian at least once, and use it as a preconditioner throughout
the iteration.

The step length calculation (15) for αs requires the computation of the scalar quantity
qT Hq, where q is a vector with 11 components. As before, we decompose the Hessian into
H = H (1) + H (2). The second term, qT H (2)q, is directly available after H (2) has been
calculated, as described above. For the first term, we note that

qT H (1)q =
P∑

j=1,k=1

R∑

r=1

M−1∑

n=0

s(tn)

〈
q j
∂un

ir

∂p j
,
∂un

ir

∂pk
qk

〉
.

Let ũn
i denote the solution obtained by solving the discretized elastic wave equation with the

forcing term
∑

j q j
∂F(tn)
∂p j

. It then holds that ũn
i = ∑

j q j
∂un

i
∂p j

, and hence,

qT H (1)q =
R∑

r=1

M−1∑

n=0

s(tn)
〈
ũn

ir , ũn
ir

〉
, (23)

can be assembled during the time stepping calculation of ũn . The cost of calculating qT Hq
therefore amounts to solving one additional elastic wave equation. This is same cost as for
computing the step length by an approximate difference quotient, as described in Kim et al.
[15]. The advantage of using a step length based on (23) is that the errors in this difference
approximation are avoided.

4 Discretizing the Singular Source Term

The gradient of the Dirac distribution in the seismic source term (2) is discretized based
on the discretization of a one-dimensional Dirac distributions δ(x − xs), and its derivative
δ′(x − xs). For all smooth, compactly supported functions of one variable ϕ(x), we have

∫
ϕ(x)δ(x − xs) dx = ϕ(xs)

∫
ϕ(x)

dδ

dx
(x − xs) dx = −dϕ

dx
(xs). (24)

Our approach is based on the technique in Petersson and Sjögreen [26], which approximates
the singular sources numerically by grid functions that satisfy (24) in a discrete scalar product
for all polynomial functions up to order q > 0, leading to q + 1 moment conditions. The
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required order is related to the order of accuracy of the approximation of the differential
equation.

For a fourth order accurate scheme, the moment conditions for δ should be satisfied for the
functions ϕ(x) = xk, k = 0, . . . , 3, and the moment conditions for δ′ should be satisfied for
k = 0, . . . , 4. Details are given in Petersson and Sjögreen [26]. To make the technique easier
to implement, we use discretizations that satisfy the moment conditions for k = 0, . . . , 4,
both for δ and δ′.

We describe the discretization of δ and its derivative in one space dimension. The multi-
dimensional approximation can be obtained in a straightforward way by Cartesian prod-
ucts of the one-dimensional discretizations. Let the one-dimensional grid be x j = jh,
j = 0, . . . , N + 1, and define the scalar product by (u, v)h1 = h

∑N
j=1 u jv j . Furthermore,

let the grid function b̃ j = b̃(xs, js) j denote a preliminary approximation of δ(x − xs), which
is centered at grid point js . We make the straightforward choice b̃ j = 0 for j < js − 2 or
j > js + 2, and determine the five coefficients in b̃ j , js − 2 ≤ j ≤ js + 2, by solving the
system formed by the five moment conditions

(
xk, b̃

)

h1
= (xs)

k, k = 0, . . . , 4. (25)

The moment conditions on b̃ do not impose any specific relation between js and xs . However,
for accuracy reasons, we want to center the stencil near xs . For example, we may choose
js such that x js − h/2 ≤ xs < x js + h/2. Within this interval, b̃ is infinitely differentiable
with respect to xs , because the elements b̃ j are either zero, or depend on xs through the right
hand side of (25), which is a polynomial in xs . However, if xs = x js + h/2 + ε, the stencil
will be centered around grid point x js for ε < 0, but around grid point x js+1 for ε ≥ 0.
Unfortunately, the elements of b̃ are not continuously differentiable with respect to xs at
ε = 0, where the stencil switches center point.

The lack of continuity with respect to xs can hamper the convergence of a gradient-based
non-linear minimization algorithm. We will therefore replace b̃(xs, js) by a smoother source
discretization, denoted by b(xs, js). The properties of b(xs, js) are given in the following
theorem.

Theorem 2 Let js be defined by x js ≤ xs < x js+1, set ν = (xs − x js )/h, and let ψ(ν) be
an m times continuously differentiable function having the properties

ψ(0) = 0, ψ(1) = 1,
dlψ

dνl
(0) = dlψ

dνl
(1) = 0, l = 1, . . . ,m. (26)

Furthermore, assume that b̃(xs, js) satisfies (25). Then, the grid function

b(xs, js) = (1 − ψ(ν)) b̃(xs, js)+ ψ(ν)b̃(xs, js + 1), (27)

is m times continuously differentiable with respect to xs , and satisfies the moment conditions
(25).

Proof Because d/dν = hd/dxs , differentiability with respect to ν is equivalent with differ-
entiability with respect to xs . Also, x js ≤ xs < x js+1 implies 0 ≤ ν < 1. As noted above, the
elements of b̃(xs, js) and b̃(xs, js + 1) are polynomials in xs , and are thus infinitely differ-
entiable with respect to xs . Because ψ is m times continuously differentiable, we conclude
that b is m times continuously differentiable for 0 < ν < 1. At the stencil switching point
xs = x js+1, the continuity conditions become
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∂ lb(xs, js)

∂xl
s

|xs→x js +1 = ∂ l b(xs, js + 1)

∂xl
s

|xs=x js +1 , l = 0, . . . ,m. (28)

Leibniz’s product rule gives

∂ lb(xs, js)

∂xl
s

= (1 − ψ(ν))
∂ l b̃(xs, js)

∂xl
s

+ ψ(ν)
∂ l b̃(xs, js + 1)

∂xl
s

+
l∑

q=1

(
l

q

)
1

hq

dqψ

dνq
(ν)

(
∂ l−q b̃(xs, js + 1)

∂xl−q
s

− ∂ l−q b̃(xs, js)

∂xl−q
s

)
. (29)

The properties of ψ in (26) give, for ν = 0,

∂ lb(xs, js)

∂xl
s

|xs=x js
= ∂ l b̃(xs, js)

∂xl
s

|xs=x js
, l = 0, 1, . . . ,m, (30)

and for ν → 1,

∂ lb(xs, js)

∂xl
s

|xs→x js +1 = ∂ l b̃(xs, js + 1)

∂xl
s

|xs=x js +1 , l = 0, 1, . . . ,m. (31)

Hence, by applying (30) to the source discretization centered at js + 1, we get

∂ lb(xs, js + 1)

∂xl
s

|xs=x js +1 = ∂ l b̃(xs, js + 1)

∂xl
s

|xs=x js +1 , l = 0, 1, . . . ,m. (32)

The continuity conditions (28) now follow from (31) and (32).
The scalar product in the moment conditions (25) is computed by summation over the

elements of the grid function b. This summation is clearly independent of js and xs , so that
we have

(xk, b)h1 = (1 − ψ(ν))
(

xk, b̃(xs, js)
)

h1
+ ψ(ν)

(
xk, b̃(xs, js + 1)

)

h1

= (1 − ψ(ν))(xs)
k + ψ(ν)(xs)

k = (xs)
k,

for k = 0, . . . , 4. Therefore, b(xs, js) satisfies the moment condition (25). ��

To construct a source discretization with two continuous derivatives, we apply (27) with
the blending function

ψ(ν) =

⎧
⎪⎨

⎪⎩

0, ν < 0,

10ν3 − 15ν4 + 6ν5, 0 ≤ ν < 1,

1, ν ≥ 1.

This function is monotonically increasing for 0 < ν < 1 and has two continuous derivatives
at the break points ν = 0 and ν = 1. Since b̃(xs, js) is non-zero at five points, the grid
function b has six non-zero elements. After some algebra, we find that the coefficients in the
stencil (27) are given by
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b(xs, js) js−2 = 1

h

(
1

12
ν − 1

24
ν2 − 1

12
ν3 − 19

24
ν4 + P(ν)

)
, (33)

b(xs, js) js−1 = 1

h

(
−2

3
ν + 2

3
ν2 + 1

6
ν3 + 4ν4 − 5P(ν)

)
, (34)

b(xs, js) js = 1

h

(
1 − 5

4
ν2 − 97

12
ν4 + 10P(ν)

)
, (35)

b(xs, js) js+1 = 1

h

(
2

3
ν + 2

3
ν2 − 1

6
ν3 + 49

6
ν4 − 10P(ν)

)
, (36)

b(xs, js) js+2 = 1

h

(
− 1

12
ν − 1

24
ν2 + 1

12
ν3 − 33

8
ν4 + 5P(ν)

)
, (37)

b(xs, js) js+3 = 1

h

(
5

6
ν4 − P(ν)

)
, (38)

where

P(ν) = 5

3
ν5 − 7

24
ν6 − 17

12
ν7 + 9

8
ν8 − 1

4
ν9,

and b(xs, js) j = 0 for all other j .
Let e(xs, js) j denote the grid function approximating the derivative of the Dirac distrib-

ution, δ′(x − xs). Following the same approach as above, we arrive at the six point stencil

e(xs, js) js−2 = 1

h2

(
− 1

12
+ 1

12
ν + 1

4
ν2 + 2

3
ν3 + R(ν)

)
, (39)

e(xs, js) js−1 = 1

h2

(
2

3
− 4

3
ν − 1

2
ν2 − 7

2
ν3 − 5R(ν)

)
, (40)

e(xs, js) js = 1

h2

(
5

2
ν + 22

3
ν3 + 10R(ν)

)
, (41)

e(xs, js) js+1 = 1

h2

(
−2

3
− 4

3
ν + 1

2
ν2 − 23

3
ν3 − 10R(ν)

)
, (42)

e(xs, js) js+2 = 1

h2

(
1

12
+ 1

12
ν − 1

4
ν2 + 4ν3 + 5R(ν)

)
, (43)

e(xs, js) js+3 = 1

h2

(
−5

6
ν3 − R(ν)

)
. (44)

Here, the definition of ν and the relation between js and xs are the same as for the grid
function b(xs, js) above. The polynomial R is given by

R(ν) = −25

12
ν4 − 3

4
ν5 + 59

12
ν6 − 4ν7 + ν8,

and e(xs, js) j = 0 for j < js − 2 or j > js + 3.
It can be verified that the grid function e satisfies the moment conditions for a fourth order

accurate discretization of δ′(x − xs),

(1, e)h1 = 0 (xk, e)h1 = −k(xs)
k−1 k = 1, . . . , 4,

and is twice continuously differentiable with respect to the source location xs .
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Fig. 1 Contour plots of X as
function of the source location
for the LOH.1 problem. Top
X (xs , zs ) for ys = 15,000. Bottom
X (xs , ys ) for zs = 2,000. All
other parameters are fixed at the
values corresponding to the
global minimum
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5 Estimating Initial Source Parameters

Figure 1 shows contour levels of X in two planes of the 11-dimensional parameter space,
where the remaining nine parameters are held at their minimizing values. This example is
taken from the layer over half space problem described in Sect. 6. The minimum is clearly vis-
ible at xs = ys = 15,000 and zs = 2,000. Gradient-based minimization algorithms are derived
under the assumption that the objective function is close to quadratic in parameter space.
Figure 1 shows that this assumption only holds close to the minimum. Furthermore, the local
minima in these cross-sections of parameter space indicate that X may have several local
minima. To make the minimization algorithm converge to the global minimum, it follows that
the initial parameter guess must be fairly accurate. We proceed by describing an approach
for establishing initial parameter values for the source estimation problem.

5.1 Initial Estimate for the Source Location and Start Time

Our initial estimate for the source location is based on first arrival times, and variations of this
technique are well-known in seismology [1]. For completeness, we give a brief description
of the approach when the material is homogeneous. Assume that the first wave arrives at
time tr at receiver location (xr , yr , zr ). If the material has homogeneous properties with
compressional wave speed cp , the travel time from source location (xs, ys, zs) to receiver r
satisfies
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T̂r (xs, ys, zs) = 1

cp

√
(xr − xs)2 + (yr − ys)2 + (zr − zs)2.

The source starting time, ts , is related to the first arrival time, tr , through T̂r (xs, ys, zs)+ ts =
tr . Hence, we consider solving

T̂r (xs, ys, zs)+ ts − tr = 0, r = 1, . . . , R. (45)

Because each receiver results in one equation for the four unknowns (xs, ys, zs, ts), we need
at least four receivers. Usually there are more than four receivers, which makes (45) an
overdetermined system. It can be solved in the least squares sense using the Gauss–Newton
method. The technique is straightforward to generalize to a vertically layered material, but
we omit the details to save space.

The above approach works well for synthetic data, but more work is needed to handle
noisy measurements, in which case it can be difficult to precisely identify the arrival time.

5.2 Estimating the Source Frequency

It has turned out to be difficult to automatically estimate the source frequency parameter, ω0.
For this reason, we require an initial guess for ω0 to be provided by the user. However, in
practice this might not be a serious limitation, because in realistic applications the observed
ground motions must be filtered in time to remove waves that can not be resolved on the
computational grid. This is a preprocessing step that is performed before the optimization is
started. The corner frequency of the filter is then related to the effective source frequency.

5.3 Initial Estimate for the Moment Tensor

Once initial estimates for the source location, frequency, and starting time have been estab-
lished, we can use the linearity of the elastic wave equation to estimate the matrix M in the
source term (2). Let u(xx), u(xy), u(xz), u(yy), u(yz), and u(zz) denote solutions of the elastic
wave equation with the matrix M set to

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ ,

respectively. The solution for a general M is then obtained as the linear combination

w(mxx ,mxy,mxz,myy,myz,mzz) := mxx u(xx) + mxyu(xy) + mxzu(xz)

+myyu(yy) + myzu(yz) + mzzu(zz).

The elements of M are determined by minimizing the wave form misfit

X = 1

2

R∑

r=1

M−1∑

n=0

s(tn)
∣∣wn

ir (mxx ,mxy,mxz,myy,myz,mzz)− dn
ir

∣∣2
. (46)

Because w is linear in mi j , X is a quadratic function of mi j . Its minimum can be computed
by solving the 6 × 6 linear system ∂X/∂mi j = 0.

123



J Sci Comput

6 Numerical Experiments

To verify our implementation and gain understanding of the performance of the proposed
approach, it is convenient to conduct numerical experiments on synthetic data. We gener-
ate the synthetic data by solving the discretized elastic wave equation with given source
parameters, and record the resulting motions at the receiver stations. In this way, the exact
source parameters are known and we can easily evaluate the convergence properties of the
minimization algorithm.

Our first test is a variation of the LOH.1 layer over half space problem, which originally
was used to evaluate the accuracy of seismic wave propagation codes [6]. In this problem, a
point moment tensor forcing with a Gaussian time function is applied at depth z∗

s = 2,000 m
below the free surface of a layered isotropic elastic material. The source time function is a
Gaussian,

g(t; t0, ω0) = ω0√
2π

e−ω2
0(t−t0)2/2,

which is parametrized by the frequencyω0 and the center time t0. In our version of the LOH.1
problem, the computational domain is a box of size 30,000×30,000× 8,500 m. Figure 2
shows the geometry of the problem and the material properties in SI-units. All computations
use the grid spacing h = 120 m and the elastic wave equation is integrated to time T = 9 s.
The spatial grid has approximately 4.5 million points.

In the following numerical experiments, the ’measured’ synthetic data is recorded at 25
receiver stations located on the free surface (z = 0), on a coarse 5 × 5 grid with spacing
3,000 m, see Fig. 2. The synthetic data is generated by solving the elastic wave equation with
the source parameter vector p∗, with components

x∗
s = y∗

s = 1.5 · 104, z∗
s = 2 · 103, m∗

xy = 1018,

m∗
xx = m∗

xz = m∗
yy = m∗

yz = m∗
zz = 0, t∗0 = 1.45, ω∗

0 = 6.0. (47)

Compared to the standard LOH.1 problem [6], note that we have reduced the source frequency
parameter ω0 and increased t0. These modifications are made to speed up the calculations by
allowing the synthetic solution to be resolved on a coarser grid.

Initial approximations for the location and start time can be obtained from the first arrival
ray tracing algorithm described in Sect. 5, applied to the material model shown in Fig. 2.
With the user choice ω0 = 6.3, this procedure gives

xs = 1.49808 · 104, ys = 1.50395 · 104, zs = 2.35273 · 103, t0 = 1.358.

Fig. 2 The material properties in
the layer over half space problem
LOH.1. The receiver stations are
placed on a 5 by 5 grid with
spacing 3,000 m

y=30000

pV =6000

s

V =3464sRho=2700

Rho=2600V =4000p V =2000
z=1000

z=8500

z

x

y

x=15000
x=30000

y=15000
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We remark that the center time t0 in the Gaussian time function follows from the source start
time ts as t0 = ts + tδ , where the half-duration is taken to be tδ = 5/ω0. After the location
and center time have been determined, the moment tensor can be estimated by using the
algorithm in Sect. 5.3, resulting in

mxx = 3.754 · 1014, mxy = 9.622 · 1017, mxz = −8.937 · 1015,

myy = 3.758 · 1014, myz = 4.351 · 1015, mzz = −5.313 · 1012.

This initial parameter estimate is sufficiently accurate to make the minimization algorithms
converge to the global minimum.

In our implementation of the source inversion algorithm, the user can either provide an
initial approximation of the parameters, or let the solver estimate them automatically. The
main drawback of the automated algorithm is that six elastic wave equations must be solved
to calculate the moment tensor components. Hence, computational time can be saved if a
sufficiently accurate approximation of the source parameters is already known, for example
from a previous solution of a nearby problem.

Our practical experience is that the number of iterations required to reach convergence
is not sensitive to the exact choice of initial guess. In many of the numerical experiments
below, we use the following initial parameter values:

xs = 1.6 · 104, ys = 1.4 · 104, zs = 2.2 · 103, mxy = 1.2 · 1018,

mxx = mxz = myy = myz = mzz = 0, t0 = 1.54, ω0 = 6.3. (48)

In Fig. 3 we plot the motion at two of the receiver stations, corresponding to the source
parameters (47) and (48), respectively. Note how a relatively small change in source para-
meters leads to a significant change in ground motion at the receivers.

6.1 Scaling the Parameters

The sizes of the parameters in the source estimation problem span many orders of magnitude.
In SI-units, xs is of the order O(104), the moment tensor components mi j are of the order
O(1015)− O(1018). The parameters t0 and ω0 are both between O(1) and O(10). Because
there is such a large difference in size between the smallest and largest parameter values, the
original minimization problem is very poorly scaled and the condition number of the Hessian
is very large.

0 2 4 6 8
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Fig. 3 The (u, v, w) components of the time-dependent ground motion at the receivers
(x, y, z)=(9,000,21,000,0) (left) and (x, y, z)=(9,000,12,000,0) (right). Curves in red are generated with
the initial source parameter values (48) and curves in black correspond to the solution of the minimization
problem (47)
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Scaling is important for both the quasi-Newton and the NLCG methods. For the quasi-
Newton methods, the scaling is used to calculate the initial approximate Hessian, H̃0. For
the NLCG methods, the parameters should ideally be scaled such that the Hessian at the
solution has condition number one. Let, H∗ := H(p∗) denote the Hessian at the solution.
The change of parameters p̂ = Sp gives the scaled Hessian Ĥ∗ = (S−1)T H∗S−1, i.e., the
scaling corresponding to Ĥ∗ = I satisfies

ST S = H∗. (49)

Hence, S could be computed by a Cholesky factorization of H∗. However, H∗ is in general
not computable because it can not be evaluated until p∗ is known, i.e., after the minimization
problem has been solved. Instead we can use a Cholesky factorization of the Hessian at
the initial parameter guess. However, this Hessian is not guaranteed to be positive definite.
As a result, its Cholesky decomposition may not always be well defined. Since the optimal
scaling matrix can be difficult to determine and the implementation of the preconditioned
NLCG algorithm is more straightforward when the scaling matrix S is diagonal, we will
in the following only consider diagonal scalings. As we shall see, a significant reduction
of the condition number of the Hessian can still be achieved. When S is diagonal, (49)
can not be satisfied exactly. Instead we minimize the residual, ||H − S2||F , which gives
S j j = √

Hj j , j = 1, . . . , P . Hence, the scaling matrix should equal the square root of the
diagonal of the Hessian. The Hessian at the minimum is positive definite, which implies
that the diagonal elements of H∗ are positive. Unfortunately, there is no guarantee that the
Hessian at the initial guess is positive definite. If there are negative diagonal elements in the
Hessian at the initial guess, we instead use the square root of the diagonal elements of the
matrix H1, see (20). It follows from the definition of H1 that its diagonal elements always
are non-negative.

The computation of the Hessian requires the elastic wave equation to be solved 11 times,
see Sect. 3.1. However, this computation needs only to be done once because the same
parameter scaling can be used throughout the minimization algorithm.

6.2 Condition Number of the Scaled Hessian

To evaluate the influence of different scalings, we calculate the condition number of the
scaled Hessian for the LOH.1 source inversion problem, as computed by the Matlab function
cond. The condition numbers of the scaled Hessian are given in the bottom row of Table 1.
The Hessian is evaluated at the minimum, i.e., H∗ = H(p∗), where p∗ is given by (47). The
diagonal variable transformation p̂ = Sp implies that the diagonal elements of S−1 can be
interpreted as reference sizes for each of the parameters. However, note that only the ratio
between the diagonal elements matter, because multiplying S by a constant factor does not
change the condition number of the scaled Hessian.

The unscaled Hessian has condition number cond(H∗) = 1.25·1039. The second column
of Table 1 shows the scaling obtained as the square root of the diagonal elements of the first
part of the Hessian, H1, evaluated at the initial parameter guess (48). Here we use H1 because
some diagonal elements of the full Hessian are negative. It is interesting to note that the scaling
obtained from the square root of the diagonal of H∗, shown in column three, leads to a slightly
larger condition number. The fourth column, labeled “Ref. size 1”, shows the scaling based on
estimated sizes of the parameters. Here we scaled xs, ys , and zs by 104, t0 by 1,ω0 by 10, and
all moment tensor components by 1018. Table 1 shows that this scaling gives a significantly
lower condition number compared to the unscaled case, but it is much larger compared to
the scalings derived from either of the Hessians. After inspecting the Hessian-based scalings,
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Table 1 Scaling factors and their influence on the condition number of the scaled Hessian. Here, H1(48)
corresponds to the first part of the Hessian evaluated at the parameter values (48). The condition number of
the unscaled Hessian is 1.25 × 1039

H1(48) H∗ Ref. size 1 Ref. size 2 Ref. size 3

1/s1,1 (xs ) 10.8 11.7 104 103 5 × 103

1/s2,2 (ys ) 10.8 11.7 104 103 5 × 103

1/s3,3 (zs ) 12.2 20.6 104 103 5 × 103

1/s4,4 (mxx ) 2.69 × 1016 2.72 × 1016 1018 1018 1018

1/s5,5 (mxy) 1.69 × 1016 1.65 × 1016 1018 1018 1018

1/s6,6 (mxz) 1.38 × 1016 1.28 × 1016 1018 1018 1018

1/s7,7 (myy) 2.69 × 1016 2.72 × 1016 1018 1018 1018

1/s8,8 (myz) 1.38 × 1016 1.28 × 1016 1018 1018 1018

1/s9,9 (mzz) 2.30 × 1016 1.87 × 1016 1018 1018 1018

1/s10,10 (t0) 2.12 × 10−3 2.56 × 10−3 1 0.1 0.5

1/s11,11 (ω0) 5.65 × 10−2 6.24 × 10−2 10 1 5

cond(S−1 H∗S−1) 27.5 31.1 6.10 × 103 80.8 1.53 × 103

we modified the reference size scaling to be 103 for the location, 1018 for the moment tensor
components, 0.1 for t0, and 1 forω0. This scaling, labeled by “Ref. size 2” in Table 1, resulted
in a significantly lower condition number. The last column of Table 1, labeled “Ref. size 3”,
shows a scaling that is in between “Ref. size 1” and “Ref. size 2”. However, it leads to a
condition number close to that of “Ref. size 1”, indicating how sensitive the condition number
is to the scaling matrix. Hence, even though it is possible to design a favorable scaling by
orders of magnitude arguments, significant amounts of tuning can be needed before a good
scaling matrix is found. Of the diagonal scalings considered here, we conclude that those
based on the Hessian, or H1, provide the most reliable way of reducing the condition number.

6.3 Convergence Rates for the Fletcher–Reeves Algorithm

We use the LOH.1 source inversion problem to evaluate the convergence of the Fletcher–
Reeves NLCG algorithm for different parameter scalings. All iterations are started at the
initial guess (48). Figure 4 shows convergence histories for the misfit and the relative max
norm of the scaled gradient, i.e., the max norm of the gradient divided by the max norm of the
initial gradient. Here, the relative norm is used to compensate for variations in sizes between
the different scaling matrices. These computations are run for up to 10 restarts (m = 10 in
Algorithm 3), with each restart cycle consisting of P = 11 inner iterations. The magenta
curve shows the convergence history when S is taken as the square root of the diagonal
elements of H∗. The results from using the square root of the diagonal elements of the first
part of the Hessian, H1, evaluated at (48), is shown by the red curve in Fig. 4. This approach
results in an almost identical convergence history. The cyan and blue curves are obtained
with scalings corresponding to the cases “Ref. size 1” and “Ref. size 2” in Table 1. Note
that the “Ref. size 1” scaling performs as poorly as the unscaled NLCG method, shown in
black. Neither of these approaches show any sign of convergence after 110 (inner) iterations.
In contrast, the “Ref. size 2” scaling performs at least as well as either of the Hessian-based
scalings. The intermediate scaling, corresponding to “Ref. size 3” and the green curve, leads
to significantly better convergence than “Ref. size 1”, despite the fact that the condition
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Fig. 4 Convergence of the misfit (left) and the relative maximum norm of the scaled gradient (right) for the
different scalings given in Table 1
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Fig. 5 Convergence of source parameters. Location (left), moment tensor components (middle), and time
shift and frequency (right)

number of the scaled Hessian is only marginally smaller compared to “Ref. size 1”. This
illustrates that the condition number of the scaled Hessian can be a blunt indicator of the
quality of a parameter scaling.

We conclude that the Hessian-based scalings always perform well, and the solution is
obtained in 40–50 iterations with the Fletcher–Reeves algorithm. The reference size scalings
can in principle be made equally effective, but the convergence rate is very sensitive to the
exact values in the scaling matrix.

Figure 5 displays the evolution of the source parameters during the iterations, when the
scaling is computed from the diagonal of H1 at the initial guess. The left figure shows how
the components of the source position (xs, ys, zs) evolve during the iterations. Here, ys is
offset by 1,000 to distinguish it from xs and zs is offset by 10,000 to make it fit into the
same plot. The circles to the right of the curves indicate the exact value of the parameter.
Similarly, the middle subplot of Fig. 5 show the evolution of the six components of the matrix
M, and the right subplot shows the time shift and the frequency plotted with an offset. Note
that all parameter values have converged in “picture norm” after about 33 iterations (3 outer
iterations of the Fletcher–Reeves algorithm).

6.4 Comparing Optimization Methods

To compare the performance of the quasi-Newton and the NLCG algorithms, we again
consider the LOH.1 source inversion problem, using (48) for the initial parameter values. For
the NLCG method, we scale the parameters based on the diagonal of H1, evaluated at the
initial parameter guess. Both BFGS and L-BFGS require an initial guess for the approximate
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Fig. 6 Maximum norm of the
scaled gradient during the
solution of the LOH.1 source
inversion problem using
Fletcher–Reeves (blue),
Polak–Ribière (cyan), BFGS
(red), L-BFGS 3 (magenta),
L-BFGS 5 (green), and steepest
descent (black)

Hessian. For this purpose we use the diagonal of the matrix H1, evaluated at the initial
parameter values. This approach requires the same amount of computational work as to
calculate the scaling for the NLCG methods. As a point of reference, we also evaluate the
convergence of the steepest descent method, using the same diagonal scaling as for the NLCG
methods.

The convergence histories for the NLCG and quasi-Newton methods are presented in
Fig. 6, where we report the maximum norm of the scaled gradient during the iterations.
Note the super-linear convergence rate close to the minimum for the BFGS and both NLCG
methods. The L-BFGS method, using 3 or 5 vectors to represent the Hessian, show linear
convergence near the minimum, and therefore require more iterations. Hence the BFGS and
the NLCG methods require fewer iterations to determine the minimum very accurately. On
the other hand, if the minimum only needs to be determined with moderate precision, e.g.,
by reducing the scaled gradient to O(10−4), most methods require approximately the same
number of iterations. However, the Fletcher–Reeves method needs a few additional iterations
to get to this level, and the steepest decent method is considerably slower.

The misfit and its gradient can be obtained by solving one elastic wave equation and one
adjoint elastic wave equation. In the NLCG and the steepest descent methods, one additional
elastic wave equation must be solved to calculate the initial step length (15). For all methods
considered here, another elastic wave equation must be solved to test that the initial step
length gives an adequate reduction of the misfit in the line search algorithm. One additional
elastic wave equation must be solved per iteration of the backtracking algorithm. However,
in most cases the initial step length is accepted and backtracking is only rarely invoked. If
the initial step length is accepted, two elastic wave equations and one adjoint wave equation
must be solved in each iteration of the BFGS and L-BFGS methods. The NLCG and steepest
descent methods require three elastic wave equations and one adjoint wave equation to be
solved per iteration.

Next we compare the computational performance for the different optimization methods.
These calculations were performed with the parallel code SW4 [28] using 512 cores of Intel
Xenon processors. In Table 2 we report the total CPU-time and total number of iterations,
such that the max norm of the scaled gradient falls below 10−12. The number of wave
equations that must be solved in the NLCG or steepest decent methods, versus the quasi-
Newton methods, predict a 4/3 ratio in execution time per iteration. Note that the calculations
using L-BFGS are somewhat slower than expected. This is because backtracking was invoked
more frequently for this method. We conclude that BFGS is the most computationally efficient
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Table 2 Computational
requirements of different
optimization algorithms to reduce
the maximum norm of the scaled
gradient to 10−12

Method Number of
iterations

Execution time
(s)

Sec./iteration

Fletcher–Reeves 53 609 11.5

Polak–Ribière 48 560 11.7

BFGS 42 350 8.3

L-BFGS 3 82 840 10.2

L-BFGS 5 60 563 9.3

L-BFGS 11 46 466 10.1

Steepest descent * * 11.3
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Fig. 7 S-velocity in the basic material model, on the free surface z = 0 (left) and on the vertical plane x = 6,568
(right). The circles and star in the left subplot indicate the receivers and source epicenter, respectively

method for solving this test problem. Of the NLCG methods, Polak–Ribière is about 10 %
faster than Fletcher–Reeves. Steepest decent was the slowest of all methods, and did not meet
the convergence criteria after 90 iterations.

6.5 An Example with a Realistic Material Model

We here demonstrate the source inversion technique in a domain with more complex material
properties, modeling a region of the Nevada desert. The right-handed coordinate system is
oriented to align the x axis with North, the y axis with East, and the z axis is directed vertically
downwards, such that z = 0 corresponds to the free surface. The geometry of the problem
is outlined in Fig. 7. The size of the computational domain in SI-units is 0 ≤ x ≤ 9,000, 0
≤ y ≤ 7,000, and 0 ≤ z ≤ 1,520, with grid size h = 20. We study the motion during the time
interval 0 ≤ t ≤ 6.

We generate synthetic ’measured’ data by solving the elastic wave equation with a
Gaussian source time function. The source parameters defining the minimum, p∗, are given
by

x∗
s = 5, 232.016, y∗

s = 3, 457.141, z∗
s = 45, ω∗

0 = 12, t∗0 = 0.5,

m∗
xx = m∗

yy = m∗
zz = 6 · 1011,

m∗
xy = m∗

xz = m∗
yz = 0. (50)

The synthetic displacement is recorded at five stations on the surface, marked by red circles
in the left subplot of Fig. 7.
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Fig. 8 S-velocity in the perturbed material model, on the free surface z = 0 (left) and on the vertical plane
x = 6,568 (right)

Throughout this section, we use the BFGS method to solve the source inversion problems.
As before, the initial approximate Hessian satisfies H̃0 = ST S, where the scaling S is
calculated from the diagonal of the initial Hessian.

We start the source inversion from the perturbed source parameter values,

xs = 5, 232.016, ys = 3, 457.141, zs = 50, ω0 = 11.5, t0 = 0.55,

mxx = 7.2 · 1011, myy = 4.8 · 1011, mzz = 1.8 · 1011,

mxy = −1.2 · 1011, mxz = 0, myz = 6 · 1010. (51)

The red curve in the left subplot of Fig. 9 shows the convergence history for the scaled
gradient. The max norm of the scaled gradient falls below 10−12 after 44 iterations. At
that point, the source parameters are within roundoff errors of the exact solution (50). This
experiment indicates that our source inversion method also works in a more complex material
model.

To test the robustness of our approach, we perturb the material wave speeds randomly
such that the amplitude of the perturbation varies between 5 and 17 % of the unperturbed
speed, with a spatial correlation length of 350 m in the horizontal directions and 60 m in the
vertical direction. One realization of this procedure gives the material model shown in Fig. 8.
We invert for the source parameters in the perturbed material based on the synthetic data
from the unperturbed material model, using (51) as initial guess. The convergence history of
the BFGS method is shown by the blue curve in the left subplot of Fig. 9. In this case, the
max norm of the scaled gradient falls below 10−12 after 42 iterations. The inversion in the
perturbed material model converges to a source with the following parameters:

xs = 5, 235.94, ys = 3, 453.54, zs = 35.212, ω0 = 11.955, t0 = 0.4999,

mxx = 5.07098 · 1011, myy = 5.135706 · 1011, mzz = 3.64143 · 1011,

mxy = 1.699243 · 109, mxz = −1.347843 · 109, myz = 4.764804 · 107. (52)

We conclude that the source inversion method is well-conditioned in the sense that a moderate
perturbation of the material leads to a moderate change in the source parameters. The solution
appears to be the most sensitive to the source depth, zs , and the mzz-component of the moment
tensor.

It is interesting to compare the wave forms corresponding to the source parameters (50) in
the unperturbed material, and the optimized source parameters (52) in the perturbed material.
In the right subplot of Fig. 9, we report the (u, v, w) components of the displacement at

123



J Sci Comput

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Iterations

||∇
χ |

| ∞

Perturbed
Unperturbed 0 1 2 3 4 5 6

0

4
x 10

−5

u

0 1 2 3 4 5 6
−2

0

x 10
−5

v

0 1 2 3 4 5 6
−3

0
3

x 10
−5

Time/s

w

Fig. 9 Left convergence history for the max norm of the scaled gradient in the unperturbed material (red) and
in the perturbed material (blue). Right (u, v, w) components of the ground motion in the unperturbed (black)
and in the perturbed (red) material model, at receiver number 3, located at x3 = 3,260, y3 = 3,720, z3 = 0

receiver number 3, located at x3 = 3,260, y3 = 3,720, z3 = 0. In seismology, it is customary to
decompose the horizontal motion in radial and transverse components relative to the source
epicenter. For receiver # 3, the u and v components are close to being aligned with the radial
and transverse directions, respectively. Note that the wave forms agree remarkably well, but
some differences are visible in the transverse component. The behavior is similar at the other
receiver locations.

7 Conclusions

We have presented an algorithm for estimating the seismic source parameters from recorded
time dependent motions at a number of receiver stations. The solution of this inverse prob-
lem is obtained by minimizing the full waveform misfit using gradient-based optimization
methods. The key features of the proposed technique are an adjoint discretization of the
fourth order accurate method in Sjögreen and Petersson [31], a source discretization that
leads to a misfit function that is twice continuously differentiable, and a parameter scaling
that makes the minimization problem well conditioned. Numerical experiments on synthetic
data indicate good convergence properties of the proposed algorithm.

We have compared the performance of the Fletcher–Reeves and Polak–Ribière conjugate
gradient methods, and the BFGS and L-BFGS quasi-Newton algorithms. For a synthetic
test case in a layered material model, all methods need about the same number of iterations
to approximately locate the minimum. However, the conjugate gradient and BFGS methods
converge faster near the solution and therefore need fewer iterations to determine the solution
very accurately. Compared to the quasi-Newton methods, the conjugate gradient methods
require an additional elastic wave equation to be solved per iteration to calculate the step
length. As a result, we found the BFGS method to be the most efficient method for solving
the source inversion problem, at least for the case considered here.

Several practical problems must be addressed before we can apply our algorithm to esti-
mate source parameters for realistic seismic events. For example, the seismographic record-
ings must be preprocessed to compensate for instrument response characteristics, and the
recorded signals must often be cleaned up to remove artifacts due to noise or other mea-
surement errors. Additional filtering will be needed to remove frequencies that can not be
resolved on the computational grid.
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An interesting extension of the current approach is the inverse problem for estimating the
material properties, i.e., the wave speeds and the density. Here, it would be desirable to find a
suitable parametrization of the material that limits the dimensionality of parameter space. We
expect that some degree of smoothness must be imposed on the material model, for example
by using piecewise smooth basis functions to represent the material properties. Alternatively,
a regularizing term could be added to the misfit functional.

Another interesting generalization of the inverse problem takes the uncertainty in the
measured data into account and treats both the measurements and source parameters as
probability distributions. See Tarantola [36] for a general discussion and Duputel et al. [10]
for an application of these ideas to seismic source inversion.

Appendix 1: Proof of Theorem 1

We start by expanding the predictor into the corrector in Algorithm 1. Then rewrite the
resulting expression as

ρ
un+1 − 2un + un−1

�2
t

= Lh(un)+ F(tn)+ �2
t

12

(
Lh(vn)+ Ft t (tn)

) + SG(un − un−1).

(53)

Next, take the scalar product between (53) and κn , and sum over all time steps,
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The sum on the left hand side of (54) can be rewritten as
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, (55)

where the initial data u0 = u−1 = κ M = κ M−1 = 0 make

M−1∑

n=0

(
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�2
t

)

h

=
M−1∑
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h

.

The first sum on the right hand side of (54) is treated by the self-adjoint property,

M−1∑

n=0

(κn,Lh(un))h =
M−1∑

n=0

(Lh(κ
n),un)h .
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The second last sum of (54) can be rewritten
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The super-grid damping term can be written
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−(κ0,SG(u−1))h + (κ M ,SG(uM−1))h . (57)

The boundary terms are zero because of the initial data u−1 = κ M = 0, and we use the
symmetry (9) to obtain
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Collecting terms gives that (54) is equivalent to
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Expanding the predictor (11) into the corrector (12) gives

ρ
κn+1 − 2κn + κn−1

�2
t

= Lh(κ
n)+ G(tn)+ �2

t

12
Lh(ζ

n)− SG(κ
n+1 − κn). (59)

Identity (13) of Theorem 1 is obtained by inserting (59) into the left hand side of (58).
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Abstract

We develop a super-grid modeling technique for solving the elastic wave equation in
semi-bounded two- and three-dimensional spatial domains. In this method, waves are
slowed down and dissipated in sponge layers near the far-field boundaries. Mathemat-
ically, this is equivalent to a coordinate mapping that transforms a very large physical
domain to a significantly smaller computational domain, where the elastic wave equa-
tion is solved numerically on a regular grid. To damp out waves that become poorly
resolved because of the coordinate mapping, a high order artificial dissipation oper-
ator is added in layers near the boundaries of the computational domain. We prove
by energy estimates that the super-grid modeling leads to a stable numerical method
with decreasing energy, which is valid for heterogeneous material properties and a free
surface boundary condition on one side of the domain. Our spatial discretization is
based on a fourth order accurate finite difference method, which satisfies the principle
of summation by parts. We show that the discrete energy estimate holds also when
a centered finite difference stencil is combined with homogeneous Dirichlet conditions
at several ghost points outside of the far-field boundaries. Therefore, the coefficients
in the finite difference stencils need only be boundary modified near the free surface.
This allows for improved computational efficiency and significant simplifications of the
implementation of the proposed method in multi-dimensional domains. Numerical ex-
periments in three space dimensions show that the modeling error from truncating the
domain can be made very small by choosing a sufficiently wide super-grid damping
layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s
problem, where fourth order accuracy is observed with a sixth order artificial dissi-
pation. We then use successive grid refinements to study the numerical accuracy in
the more complicated motion due to a point moment tensor source in a regularized
layered material.

1 Introduction

To numerically solve a time-dependent wave equation in an unbounded spatial domain, it is
necessary to truncate the domain and impose a far-field closure at, or near, the boundaries
of the truncated domain. Numerous different approaches have been suggested, see for
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This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
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example [4, 6, 16]. The perfectly matched layer (PML) technique, originally proposed
by Berenger [3] and later improved by many others, has been very successful for electro-
magnetic wave simulations. Unfortunately, the PML technique has stability problems
when applied to the elastic wave equation, where free surface boundaries and material
discontinuities can form wave guides in which the solution of the PML system becomes
unstable [18]. The PML system is also known to exhibit stability problems for some
anisotropic wave equations [2].

Similar to the PML technique, the super-grid method [1] modifies the original wave
equation in layers near the boundary of the computational domain. The PML system
is defined by Fourier transforming the original wave equation in time and applying a
frequency-dependent complex-valued coordinate transformation in the layers. Additional
dependent variables, governed by additional differential equations, must be introduced to
define the PML system in the time domain. In comparison, the super-grid method is based
on applying a real-valued coordinate stretching in the layers, where also artificial dissipa-
tion is added. The super-grid method does not rely on additional dependent variables,
and is therefore more straight forward to implement. In the layers near the boundary, the
PML method damps the waves; in contrast, the super-grid method both damps the waves
and slows them down. The main advantage over the PML technique is that the solution
of the wave equation with super-grid layers is energy stable, if there is a corresponding
energy estimate for the underlying wave equation.

In this article, we generalize the super-grid approach [1] to the elastic wave equation
in second order formulation. Motivated by applications from seismology and seismic ex-
ploration, we focus on half-plane or half-space domains, where a free surface boundary
condition must be satisfied on only one side of the domain. The half-space problem sub-
ject to a free surface condition permits surface waves. These waves only propagate along
the free surface and decay exponentially away from the surface. They are fundamentally
different from the longitudinal and transverse waves that travel through the volume of the
domain. Surface waves therefore constitute an additional type of wave that need to be
absorbed by the far-field closure.

We are primarily interested in cases where the solution is of a transient nature, being
driven by initial data with compact support, or by a forcing function that only is active
(non-zero) for a limited time. Because of the artificial damping in the super-grid layers, the
solution becomes very small on the outside of the layers. For this reason, it is natural to
impose homogeneous Dirichlet conditions at the super-grid boundaries, which truncate the
computational domain. In this paper, we develop a finite difference method where fourth
order accurate summation by parts (SBP) operators [17] are combined with centered fourth
order accurate finite difference formulas in the interior of the domain. The idea is to only
use the SBP operators near the free surface boundary, and use centered finite difference
formulas all the way up to the super-grid boundaries. This is made possible by enforcing
homogeneous Dirichlet boundary conditions at several grid points outside the super-grid
boundaries. This simplified boundary closure allows the implementation of the super-grid
approach to be more efficient and greatly simplified in multi-dimensional domains, because
the SBP operators are only needed near the free surface boundary.

SBP operators make it possible to prove stability for a difference approximation by
mimicking the integration by parts estimate for the partial differential equation. In the
interior of the domain, these operators are centered finite difference formulas. To satisfy
the principle of SBP, the difference formulas must become biased and have coefficients
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that are different for each grid point near a boundary. We call the discretization technique
in [17] SBP-GP because it uses ghost points. These points are located just outside the
boundary, and are used to enforce the boundary conditions strongly. There is also a related
approach, called SBP-SAT [10, 9], which uses penalty terms to enforce the boundary
conditions weakly. In principle, either of these SBP discretizations could be used to solve
the elastic wave equation with super-grid layers.

The main theoretical result of this article is that stability of the numerical method can
be proven also when the SBP operators are combined with centered operators, together
with our simplified boundary closure near the super-grid boundaries. This leads to an
overall spatial discretization that does not satisfy the principle of SBP, but nevertheless
is energy stable. Note that the simplified boundary closure is intimately related to the
super-grid method. It can only lead to an accurate approximation if the solution is very
small near the super-grid boundary and is not appropriate for cases with inhomogeneous
boundary data.

This paper continues the development of the super-grid method, with an emphasis on
wave equations in second order formulation and multi-dimensional domains. While most
of the development in [1] was done for hyperbolic systems in first order formulation in the
continuous (PDE) setting, we focus on the elastic wave equation and establish stability
results for the fully discrete approximation. We also present a new damping function
for the super-grid layers, which gives the strongest damping in the outer parts of the
supergrid layers. As a result, the suppression of outgoing waves is improved compared
to the damping function used in [1]. A new tapering approach is introduced to scale the
damping functions near edges and corners in multi-dimensional domains, such that the
strength of the damping along the sides of the domain does not have to be reduced to
meet the stability constraints of the explicit time integrator.

The remainder of the paper is organized in the follwing way. The super-grid method
is first outlined in Section 1.1. In Section 2, we generalize our fourth order accurate
time integration scheme [17] to the 1-D wave equation with grid stretching and artificial
dissipation in the super-grid layers. We present our simplified boundary closure for the
discretization that enables the centered difference stencils to be used all the way up to
the super-grid boundaries. Because we solve the wave equation in second order formu-
lation, the artificial dissipation contains a time derivative. We present an explicit time
discretization and apply the energy method to prove stability of the fully discrete scheme.
We outline a von Neumann analysis to show how the coefficient of the artificial dissipation
must scale with the grid size to avoid a reduction of the explicit time step. It also exposes
the stability limit of the amplitude of the damping function.

In Section 3 we generalize the results to the half-plane problem for the two-dimensional
elastic wave equation subject to a free surface boundary condition along the physical
boundary. The spatial discretization combines the SBP boundary modified stencils at the
free surface boundary with our simplified boundary closure at the super-grid boundaries.
The super-grid damping is introduced dimension by dimension and the energy method
is used to show that the fully discrete scheme is stable. Our energy estimate shows that
the strengths of the one-dimensional damping terms are accumulated near corners, where
two super-grid layers meet. A two-dimensional von Neumann analysis illustrates that the
explicit time step is limited by the sum of the strengths of the one-dimensional dissipation
terms. To avoid having to either reduce the amplitude of the damping functions away
from corners, or impose additional time step restrictions, we present a tapering approach
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that reduces the strength of the one-dimensional damping functions near corners.
The reflection properties of the super-grid method are evaluated numerically by solv-

ing the three-dimensional elastic wave equation in Section 4. We first consider Lamb’s
problem, where the numerical solution is compared to an analytical solution. We also test
the accuracy on a regularized layered material model, where the convergence is assessed
by successive grid refinements. Conclusions are given in Section 5.

1.1 Outline of the supergrid method

Consider solving a time-dependent wave equation in an unbounded or semi-bounded (half-
space) domain. Assume that we wish to calculate the numerical solution in a finite time
interval 0 ≤ t ≤ tmax, in the bounded spatial domain x ∈ Ω̄ ∈ Rd (d = 1, 2, 3). We will call
this the domain of interest. For d = 3 this could, for example, be a box shaped domain
Ω̄ = {x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z1 ≤ z ≤ z2}, where x = (x, y, z)T are the Cartesian
coordinates. Also assume that the initial conditions and forcing functions have compact
support in Ω̄. While the numerical solution may be calculated in a computational domain
that is larger than Ω̄, it must eventually be truncated to a finite extent. In general, the
truncation of the computational domain leads to artificial reflections that can pollute the
numerical solution in the domain of interest. However, due to the hyperbolic nature of wave
equations, no artificial reflections can enter Ω̄ for t ≤ tmax, if the computational domain is
sufficiently large. For example, if the computational domain is given by x1−L ≤ x ≤ x2+L,
reflections from the outer boundary can only pollute the solution in the subdomain x1 ≤
x ≤ x2 for times t > tL = 2L/cmax. Here, cmax is the largest phase velocity in the domain.
Hence, by choosing L ≥ tmax cmax/2, we can avoid all artifacts from the truncation of the
computational domain, up to time t = tmax. Unfortunately, the size of the computational
domain would grow with tmax and could easily become much larger than the original
domain of interest. Hence, this simple approach is computationally intractable unless the
grid size can be made significantly larger outside the domain of interest, without polluting
the numerical solution with poorly resolved modes.

The first ingredient of the super-grid approach [1] is to introduce a smooth coordinate
transformation,

x = X(ξ), y = Y (η), z = Z(ζ),

that maps the computational domain onto a much larger extended domain. For example,
in the x-direction, x1 − ` ≤ ξ ≤ x2 + ` is mapped onto x1 − L ≤ x ≤ x2 + L, where
`� L. The original wave equation is solved inside the domain of interest, i.e., the identity
mapping x = ξ is used for x1 ≤ ξ ≤ x2. The parts of the computational domain that are
outside of the domain of interest are called the super-grid layers, i.e., x1 − ` ≤ ξ < x1 and
x2 < ξ ≤ x2 + ` .

Spatial derivatives in the wave equation are transformed according to the chain rule,

∂

∂x
= φ(x)(ξ)

∂

∂ξ
,

∂

∂y
= φ(y)(η)

∂

∂η
,

∂

∂z
= φ(z)(ζ)

∂

∂ζ
, (1)

where

φ(x)(ξ) =
1

X ′(ξ)
, φ(y)(η) =

1

Y ′(η)
, φ(z)(ζ) =

1

Z ′(ζ)
.

To make the coordinate transformation non-singular, we assume φ(q) ≥ εL > 0, q = x, y, z.
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Figure 1: The stretching function φ(ξ) (red) and the auxilliary function ψ(ξ) (blue), which
controls the strength of the damping. In this case, the width of each super-grid layer is
` = 1. The dashed vertical lines indicate the boundaries of the domain of interest, here
1 ≤ ξ ≤ 3.

For a one-dimensional Cauchy problem, φ(x) needs to be a smooth function that tran-
sitions monotonically from εL to 1 between x1 − ` and x1, and then back to εL between
x2 and x2 + `, see Figure 1. For higher dimensional problems, the functions φ(y) and φ(z)

are defined in a corresponding way.
In the mapped (computational) coordinates, the length scale of the solution in the

ξ-direction is proportional to φ(x). The solution is therefore compressed inside the layers,
where φ(x) < 1. This corresponds to a slowing down of all traveling waves in the mapped
coordinates. Note that in a two-dimensional domain, φ(x) < 1 corresponds to a slow down
in the ξ-direction, while φ(y) < 1 gives a slow down in the η-direction. Hence, if the
original wave equation has isotropic wave propagation properties, it becomes anisotropic
in the mapped coordinates. The case of a half-plane problem in two space dimensions is
illustrated in Figure 2.

The super-grid method discretizes the mapped (computational) domain on a grid with
constant spacing. For this reason, the resolution in terms of grid points per wave length
will be very poor in the layers. To avoid polluting the numerical solution by modes that
can not be resolved on the grid, the second essential ingredient of the super-grid method
is the addition of artificial damping. The dissipative term is only added in the layers and,
for efficiency reasons, only explicit discretizations are considered. The idea is to damp
out poorly resolved waves before they arrive at the outer edge of the layer, where the
computational domain is truncated. As was emphasized in [1], it is important to use a
damping term of sufficiently high order, such that it does not dominate the truncation error
in the interior of the domain. The strength of the dissipation is controlled by the auxilliary
function ψ (see Figure 1), which must be ramped up smoothly to avoid artificial reflections.
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Figure 2: A two-dimensional half-plane domain with a physical boundary along the top
edge. The stretching functions satisfy φ(x) = φ(y) = 1 in the white region, where the
original wave equation is solved. The wave speed is reduced in the surrounding layers by
taking φ(x) < 1 (red) and φ(y) < 1 (blue). In the purple corner regions, φ(x) < 1 and
φ(y) < 1.

The amplitude of the damping must be large enough to damp out the solution before it is
reflected back into the domain of interest. However, that amplitude is also restricted by
the stability limit of the explicit time stepping scheme. Numerical experiments show that
the super-grid method gives the best performance when the amplitude of the damping is
close to the stability limit.

2 The scalar wave equation in one space dimension

Consider the Cauchy problem for the one-dimensional scalar wave equation,

ρ
∂2u

∂t2
=

∂

∂x

(
µ
∂u

∂x

)
+ f(x, t), −∞ < x <∞, t ≥ 0,

u(x, 0) = g0(x), ut(x, 0) = g1(x), −∞ < x <∞.
(2)

Here ρ = ρ(x) > 0 and µ = µ(x) > 0 are material coefficients that may vary in space, g0(x)
and g1(x) are the initial data, and f(x, t) is the external forcing function. The forcing
and initial data are assumed to have compact support in the sub-domain x ∈ Ω̄ where
Ω̄ = {x1 ≤ x ≤ x2}. This is also assumed to be the domain of interest, i.e., where we want
to find a numerical solution of (2).

We add a super-grid layer of width ` > 0 on either side of Ω̄, and choose the coordinate
system such that x1 − ` = 0 and x2 + ` = xmax. After introducing the coordinate map-
ping (1) (using the simplified notation φ = φ(x)) and introducing a super-grid dissipation
of order 2p, we obtain the modified wave equation

ρ
∂2v

∂t2
= φ

∂

∂ξ

(
φµ

∂v

∂ξ

)
− ε(−1)pφ

∂p

∂ξp

(
σρ
∂pvt
∂ξp

)
+ f(X(ξ), t), (3)

for 0 ≤ ξ ≤ xmax and t ≥ 0, where ε > 0. The solution of (3) is subject to the initial
conditions

v(ξ, 0) = g0(X(ξ)), vt(ξ, 0) = g1(X(ξ)), 0 ≤ ξ ≤ xmax. (4)
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The stretching function φ(x) and the damping function σ(x) are constructed from the
auxilliary function ψ(x), which smoothly transitions from one to zero and then back to
one,

ψ(x) =



1, x ≤ x1 − `,
P ((x1 − x)/`), x1 − ` < x < x1,

0, x1 ≤ x ≤ x2,
P ((x− x2)/`), x2 < x < x2 + `,

1, x ≥ x2 + `,

(5)

Here we use the polynomial function P (ξ) = ξ6(462− 1980ξ+ 3465ξ2− 3080ξ3 + 1386ξ4−
252ξ5), which satisfies P (0) = 0, P (1) = 1, and makes ψ(ξ) five times continously differ-
entiable. The one-dimensional stretching and damping functions are defined by

φ(x) = 1− (1− εL)ψ(x), σ(x) =
ψ(x)

φ(x)
. (6)

Note that the constant εL > 0 is not related to the damping coefficient ε in (3). Through-
out the numerical experiments in this paper, we use εL = 10−4. The functions ψ and φ
are plotted in Figure 1.

The stretching and damping functions only modify the original wave equation inside
the supergrid layers, because φ(x) = 1 and σ(x) = 0, for x1 ≤ x ≤ x2. Also note the
factor ρσ in the dissipation term in (3). Here, ρ is included to make this term balance the
left hand side of the equation, i.e., to make ε independent of ρ.

We proceed by deriving an energy estimate. Note that the regular L2 scalar product
can be used to derive an energy estimate for the original wave equation (2). To estimate
the solution of (3) it is therefore natural to weigh the scalar product by the stretching
function (1). For real-valued functions v(ξ) and w(ξ), we define

(v, w)φ =

∫ xmax

0

v(ξ)w(ξ)

φ
dξ, ‖v‖2φ = (v, v)φ,

where ‖v‖φ is a norm because φ ≥ εL > 0.
Assume that f = 0 and multiply the differential equation (3) by vt/φ and integrate

over 0 ≤ x ≤ xmax. After integration by parts, we get

(vt, ρvtt)φ + (vtξ, φ
2µvξ)φ = −ε

(
∂pvt
∂ξp

, φσρ
∂pvt
∂ξp

)
φ

+BT,

where the boundary term satisfies

BT = [vtφµvξ]
xmax

0 − ε(−1)p
[(
vt
∂p−1

∂ξp−1
− . . .+ (−1)p−1

∂p−1vt
∂ξp−1

)(
σρ
∂pvt
∂ξp

)]xmax

0

. (7)

The boundary term vanishes if we impose the following p boundary conditions at ξ = 0
and ξ = xmax,

v(0, t) = 0, v(xmax, t) = 0,

vξ(0, t) = 0, vξ(xmax, t) = 0,

...
...

∂p−1v

∂ξp−1
(0, t) = 0,

∂p−1v

∂ξp−1
(xmax, t) = 0.

t ≥ 0. (8)
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We define the energy by E(t) = 1
2(vt, ρvt)φ+ 1

2(φvξ, φµvξ)φ, which is a norm because ρ > 0,
µ > 0, and φ ≥ εL > 0. We arrive at

d

dt
E(t) = −ε

(
∂pvt
∂ξp

, φσρ
∂pvt
∂ξp

)
φ

≤ 0. (9)

Hence, E(t) ≤ E(0) for t > 0. Assuming that the solution of the initial boundary value
problem (3), (4), (8) exists1, we conclude that is well-posed if ε ≥ 0.

Because E(t) is scaled by ρ, the strength of the damping in the super-grid layers is
determined by the product εφσ. This motivates our construction of σ(x) in (6), which
satisfies φ(x)σ(x) = ψ(x) → 1 for x → 0 and x → xmax. Our construction makes
the damping the strongest in the outer parts of the super-grid layers. We remark that
our construction is different from that used in [1], where the damping function satisfies
σ(x) → 1 for x → 0 and x → xmax. Because the strength of the damping is determined
by the product σφ, the construction used in [1] gives a damping that is the strongest near
the middle of the super-grid layers, and very weak in the outer parts of the super-grid
layers, because φσ → εL � 1 for x→ 0 and x→ xmax.

2.1 Discretizing the wave equation with super-grid layers

The theoretical properties of the discretization developed in this and the following sections
builds to a large extent on the basic theory developed in [17]. Familiarity with that paper
will expedite the understanding of the theory developed here.

We discretize the one-dimensional spatial domain on the uniform grid ξj = (j − 1)h,
j = 1 − p̃, . . . , 1, 2, 3, . . . , Nx + p̃, where p̃ is the number of ghost points (to be defined
below). The constant grid spacing, h > 0, is chosen such that ξNx = xmax. Time is
discretized by tn = n∆t, where n = 0, 1, 2, . . . and ∆t > 0 is the constant time step. The
value of the grid function u at the point (ξj , tn) is denoted unj . To simplify the notation,
we occasionally drop the superscript or subscript on the grid function.

We discretize the spatial operator in (3) by the formula

∂

∂ξ

(
φµ

∂u

∂ξ

)∣∣∣∣
ξj

= G(φµ)uj +O(h4),

where the fourth order centered operator is given by (here φ is absorbed into µ to simplify
the notation),

G(µ)uj :=
1

12h2
(
µ̄j−1(uj − uj−2)− 16µ̄j−1/2(uj − uj−1)

+ 16µ̄j+1/2(uj+1 − uj)− µ̄j+1(uj+2 − uj)
)
, j = 1, 2, . . . , Nx, (10)

and µ is averaged according to

µ̄j =
1

2
(3µj−1 − 4µj + 3µj+1) , (11)

µ̄j+1/2 =
1

8
(µj−1 + 3µj + 3µj+1 + µj+2) . (12)

1Existence of solutions of the corresponding first order system with super-grid dissipation follows from
Theorem 7.8.1 in [7]. Additional analysis would be required to establish existence of solutions of the wave
equation considered here, but this is beyond the scope of the present article.
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In [17], we developed a SBP boundary closure for (10). However, only the centered formula
is needed here because no physical boundaries are present in the one-dimensional case.

A fourth order accurate time-integration scheme follows from the Taylor expansion

un+1
j − 2unj + un−1j

∆2
t

= utt|nj +
∆2
t

12
utttt|nj +O(∆4

t ). (13)

We first consider the domain x1 ≤ ξ ≤ x2, where the super-grid dissipation term is zero
because σ = 0. In that case, the semi-discrete approximation of (3) gives the formula for
the second time derivative of uj ,

ρjutt|j = φjG(φµ)uj + f(ξj , t). (14)

An expression for the fourth time derivative of uj follows by differentiating (14) twice,

ρjutttt|j = φjG(φµ)utt|j + ftt(ξj , t). (15)

Substituting (14) and (15) into the Taylor series (13) gives the fourth order time stepping
scheme in the interior of the domain.

When a fourth order (p = 2) artificial dissipation term is used in (3), it is discretized
according to

(σρuξξt)ξξ|j ≈ D+D−

(
σjρj D+D−

unj − u
n−1
j

∆t

)
=: Q4(σρ)

(
unj − u

n−1
j

∆t

)
. (16)

By replacing D+D− by (D+D−)p/2, this formula generalizes to artificial dissipations of
order 2p, for p = 0, 2, 4, . . ..

A sixth order (p = 3) artificial dissipation term is discretized according to

(σρuξξξt)ξξξ|j ≈ D+D−D+

(
σj−1/2ρj−1/2D−D+D−

unj − u
n−1
j

∆t

)

=: Q6(σρ)

(
unj − u

n−1
j

∆t

)
, (17)

where the average is used for the coefficient, e.g., σj−1/2 = (σj + σj−1)/2. The above
formula can be generalized to any odd p ≥ 1 by replacing the difference operator D+D−D+

by (D+D−)(p−1)/2D+, and D−D+D− by D−(D+D−)(p−1)/2.

Remark 1. The discretizations of the dissipation terms are of low order accuracy. How-
ever, the coefficient ε will later be taken proportional to h2p−1, thereby making these terms
artificial in an approximation of the non-dissipative wave equation. With this choice of
ε, and considering the scheme as an approximation of the non-dissipative wave equation,
the dissipation term will restrict the overall accuracy to third order for p = 2, and to fifth
order for p = 3.

We arrive at the fully discrete approximation of (3),

ρj
un+1
j − 2unj + un−1j

∆2
t

= φjG(φµ)unj + f(ξj , tn)+

∆2
t

12

(
φjG(φµ)ünj + ftt(ξj , tn)

)
− ε(−1)pφjQ2p(σρ)

(
unj − u

n−1
j

∆t

)
, (18)
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where
ünj = (φjG(φµ)unj + f(ξj , tn))/ρj . (19)

The stencil for G(φµ)uj in (10) is five points wide. If a fourth order dissipation is used,
which also is five points wide, we must provide boundary conditions at two ghost points.
Three ghost points are needed if a sixth order dissipation is used, because its stencil is
seven points wide. In general, we need max(2, p) boundary conditions.

A natural discretization of the boundary conditions (8) is given by

Bsg(u
n) = (0, . . . , 0)T , Bsg(ü

n) = (0, . . . , 0)T , n = 0, 1, 2, . . . , (20)

where the boundary operator Bsg(u) picks out max(2, p) ghost point values outside each
super-grid boundary,

Bsg(u) = (u1−p̃, . . . , u0, uNx+1, . . . , uNx+p̃)
T , p̃ = max(2, p). (21)

Remark 2. The implementation of the time-stepping scheme (18), (19), (20) can be
simplified by writing it in predictor-corrector form [17]. This formulation also clairifies
the application of the boundary conditions during one time step. Given un at all interior
grid points, the ghost point values of un are first defined by enforcing Bsg(u

n) = 0. We
can then evaluate (19) to compute ün at all interior grid points, after which its ghost point
values are defined by enforcing Bsg(ü

n) = 0. This defines the corrector term G(φµ)ün and
allows un+1 to be updated at all interior grid points.

2.2 Discrete energy estimate

We begin by defining the one-dimensional discrete L2 scalar product and norm for real-
valued grid functions vj , wj , by

(v, w)h1 = h

Nx∑
j=1

vjwj , ‖v‖2h1 = (v, v)h1.

Essential properties of G(φµ)uj are specified in the following lemma.

Lemma 1. Let u and v be real-valued grid functions satisfying the boundary condition
Bsg(u) = 0, Bsg(v) = 0, and let µj > 0 and φj ≥ εL > 0 be the grid functions representing
the material property and the stretching function, respectively. The spatial operator G(φµ),
defined by (10), satisfies

(v,Gu)h1 = −K0(v, u) ∈ <, (22)

where the function K0(v, u) is bilinear, symmetric and positive definite, i.e., K0(v, u) =
K0(u, v) and K0(u, u) ≥ γ‖u‖2h1, γ > 0.

Proof. See Appendix A.1.

The super-grid dissipation term satisfies a similar lemma.

Lemma 2. Let the real-valued grid functions σ and ρ satisfy σj ≥ 0 and ρj > 0. Fur-
thermore, let u and v be real-valued grid functions that satisfy the boundary conditions
Bsg(u) = 0 and Bsg(v) = 0. The super-grid dissipation operator Q2p(σρ), defined by (16)
or (17), satisfies

(v,Q2pu)h1 = (−1)pC0(v, u) ∈ <,

10



where the function C0(v, u) is bilinear, symmetric, and positive semi-definite, i.e., C0(v, u) =
C0(u, v) and C0(u, u) ≥ 0.

Proof. See Appendix A.2.

To derive a discrete energy estimate for (18), it is convenient to work with grid functions
that do not have ghost points. We therefore define grid functions ūj and v̄j such that

ūj = uj , v̄j = vj , 1 ≤ j ≤ Nx.

We also define square matrices K and C2p such that,

K0(u, v) = (ū,Kv̄)h1, C0(u, v) = (ū, C2pv̄)h1, if Bsg(u) = 0 and Bsg(v) = 0.

Because the function K0(u, v) is symmetric and positive definite, (ū,Kv̄)h1 = (Kū, v̄)h1
and (v̄, Kv̄)h1 > 0 for all v̄ 6= 0, i.e. K = KT and K > 0. From (22) we have (u,Gv)h1 =
−(ū,Kv̄)h1. By taking u = 0 except at one interior grid point where uj = 1, we obtain a
pointwise identity. The same procedure applies to the damping term Q2p, and we conclude
that

Gv = −Kv̄ and Q2pv = (−1)pC2pv̄, if Bsg(v) = 0. (23)

We write the forcing in (18) in vector form as F (t), with elements Fj(t) = f(X(ξj), t),
j = 1, 2, . . . , Nx. Also introduce the diagonal matrices M and Φ with elements Mjj = ρj
and Φjj = φj , respectively. Because the acceleration satisfies the boundary conditions
Bsg(ü) = 0, there is a grid function without ghost points with elements ¨̄uj = üj , for
1 ≤ j ≤ Nx, such that

¨̄u = −M−1ΦKū+M−1F.

We summarize these results in the following Lemma.

Lemma 3. The time-integration scheme (18) can be written in matrix form as

1

∆2
t

M
(
ūn+1 − 2ūn + ūn−1

)
= −ΦKūn + F (tn) +

∆2
t

12
(−ΦK ¨̄un + Ftt(tn)) −

ε

∆t
ΦC2p

(
ūn − ūn−1

)
, n = 0, 1, 2, . . . . (24)

The matrices K and C2p, defined by (23), are both symmetric; K is positive definite and
C2p is positive semi-definite. The matrices M and Φ are diagonal with positive elements.

The solution of (24) is subject to the inital conditions

ū0j = g0(X(ξj)), ū−1j = g̃1(X(ξj)), j = 1, 2, . . . , Nx, (25)

where g̃1 depends on g0 and g1.
Our main result for the discretization of the one-dimensional wave equation with super-

grid layers is formulated in the following theorem.

Theorem 1. Let ūn, n = 0, 1, 2, . . ., be a solution of the time-integration scheme described
in Lemma 3. Define the discrete energy by

en+1/2 :=
1

∆2
t

(
ūn+1 − ūn,Φ−1M(ūn+1 − ūn)

)
h1

+(
ūn+1,Kūn − ∆2

t

12
KM−1ΦKūn

)
h1

− ε

2∆t

(
ūn+1 − ūn, C2p

(
ūn+1 − ūn

))
h1
. (26)

11



The discrete energy en+1/2 is a norm of the solution if the inequalities

2
(
w̄,Φ−1MR1w̄

)
h1
> ε∆t (w̄, C2pw̄)h1 , (27)(

w̄,Φ−1MR2w̄
)
h1
> 0, (28)

are satisfied for all vectors w̄ 6= 0. Here, R1 = P1(∆
2
tM
−1ΦK) and R2 = P2(∆

2
tM
−1ΦK),

where P1 and P2 are the matrix polynomials,

P1(A) := I − 1

4
A+

1

48
A2, P2(A) :=

1

4
A− 1

48
A2. (29)

If ε ≥ 0 and F (t) = 0, the solution of (24) satisfies the energy estimate

en+1/2 = en−1/2 − ε

2∆t

(
ūn+1 − ūn−1, C2p

(
ūn+1 − ūn−1

))
h1
, (30)

which is non-increasing in n. The time-stepping scheme (24) is therefore stable if the time
step satisfies the inequalities (27) and (28).

Proof. See Appendix A.3

Remark 3. In [17] we used the Cayley-Hamilton theorem to analyze the stability of the
non-dissipative version of the time-stepping scheme (24). When ε = 0 the inequalities (27)
and (28) simplify to eigenvalue conditions, and one can prove that the scheme is stable
under the time step restriction

∆t ≤
2
√

3

maxj
√
κj
, M−1ΦKej = κjej , ε = 0.

Note that M−1ΦK has the same spectrum as the symmetric positive definite matrix

M−1/2Φ1/2KΦ1/2M−1/2.

Hence all eigenvalues κj are real and positive.

Unfortunately, the energy estimate does not tell us how large the eigenvalues are, and
therefore only says that the time-stepping scheme is stable if the time-step is sufficiently
small.

2.3 Estimating the time step

In this section we outline how a von Neumann analysis can be used to estimate the stability
limit of the time step. For this purpose, we assume constant stretching and dissipation
coefficients, as well as constant material properties,

σ = σ0 ≥ 0, φ = φ0 ≥ εL > 0, µ = µ0 > 0, ρ = ρ0 > 0.

To study the stability we assume that the external forcing is zero, f(x, t) = 0. When all
coefficients are constant, the fully discrete scheme (18) simplifies to

un+1
j − 2unj + un−1j =

∆2
tφ

2
0µ0

ρ0

(
D4u

n
j +

∆2
tφ

2
0µ0

12ρ0
(D4)

2unj

)
− ε(−1)pσ0φ0∆t (D+D−)p

(
unj − un−1j

)
, (31)

12



where D4uj = D+D−uj − h2

12 (D+D−)2uj is a fourth order accurate approximation of uξξ.
We start by estimating the stability limit for ∆t without super-grid dissipation and set

ε = 0. After a straighforward von Neumann analysis, we find that the necessary conditions
for stability are satisfied if

0 ≤ ∆t

h

√
φ20µ0
ρ0
≤ 3

2
, ε = 0. (32)

Here,
√
φ20µ0/ρ0 is the local phase velocity. When φ, µ and ρ vary in space, (32) must

be satisfied at every point in the domain. Note that the stretching function φ reduces the
phase velocity in the super-grid layers.

In practice, effects from variable coefficients and boundary conditions can be taken
into account by adjusting the coefficient 3/2 on the right hand side of (32). Let CCFL
denote this adjusted value, which can be determined by numerical experiments. We arrive
at the standard CFL-type condition,

∆t

h
≤ CCFL

cmax
, cmax = max

0≤ξ≤xmax

√
µ(ξ)

ρ(ξ)
, ε = 0. (33)

Next we study the stability limit inside the super-grid layer, where φ � 1 and the
local phase velocity is very small. For simplicity we focus on the dissipation term only
and consider the stability of

un+1
j − 2unj + un−1j = −ε(−1)pσ0φ0∆t (D+D−)p

(
unj − un−1j

)
, (34)

By introducing the un-divided difference operators ∆± = hD± and the scaled dissipation
coefficient

γ2p =
ε∆t

h2p
, (35)

the simplified scheme (34) can be written as

un+1
j − 2unj + un−1j = −(−1)pγ2pσ0φ0 (∆+∆−)p

(
unj − un−1j

)
. (36)

This difference scheme is independent of the grid size and the time step. A von Neumann
analysis can be used to show that the necessary conditions for stability of (36) are satisfied
if

0 ≤ γ2pσ0φ0 ≤
2

4p
. (37)

In practice, we want to use the largest time step that makes the scheme stable without
super-grid dissipation, i.e., satisfies (33) with equality. The maximum value of the damping
coefficient γ2p is then determined by numerical experiments on a coarse grid. Because ∆t/h
satisfies (33) with equality, the scaling (35) gives

ε =
γ2ph

2p

∆t
=
γ2p
C
h2p−1, C :=

∆t

h
=
CCFL
cmax

, C = const. (38)

An important consequence is that a super-grid dissipation term of order 2p introduces an
O(h2p−1) perturbation of the original wave equation. Also note that (37) indicates that
the scaled dissipation coefficient needs to be reduced by a factor 4 when p is increased by
one, e.g., when changing from fourth to sixth order super-grid dissipation.
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3 The elastic wave equation

This section generalizes the super-grid technique to the half-plane problem for the elastic
wave equation subject to a free surface boundary condition along the physical boundary.
We describe a fourth order accurate discretization that combines SBP-GP operators at
the free surface boundary, centered operators in the interior, and our simplified boundary
closure at the super-grid boundaries. For clarity of presentation, the description and
analysis are done in two space dimensions. It should be straightforward for the reader
to generalize the results to the three-dimensional equations. See, for example, [13] for a
second order accurate discretization of the three-dimensional equations.

Consider the time-dependent elastic wave equation in the two-dimensional half-plane
x = (x, y) ∈ Ω = {−∞ < x <∞, 0 ≤ y ≤ ∞}, governing the displacement with Cartesian
components u = (u, v)T ,

ρutt = ((2µ+ λ)ux + λvy)x + (µvx + µuy)y + f (x),

ρvtt = (µvx + µuy)x + (λux + (2µ+ λ)vy)y + f (y),
x ∈ Ω, t ≥ 0. (39)

The heterogeneous isotropic material is characterized by the density ρ(x) > 0, and the
Lamé parameters λ(x) and µ(x) > 0. In the following we assume λ(x) > 0. Furthermore,
(f (x), f (y))T are the components of the external forcing functions. The displacement is
subject to initial conditions

u = g0, ut = g1, x ∈ Ω, t = 0, (40)

where g0 and g1 are the initial data. The solution is subject to a normal stress condition
on the physical boundary,

µ(vx + uy) = τ (xy),

(2µ+ λ)vy + λux = τ (yy),
−∞ < x <∞, y = 0, t ≥ 0, (41)

where τ (yy) and τ (xy) are the boundary forcing functions. When τ (yy) = τ (xy) = 0 this
boundary condition is often called a free surface, or traction free, condition.

Similar to the one-dimensional case, we want to calculate the solution of (39)-(41)
in the sub-domain x ∈ Ω̄ = {x1 ≤ x ≤ x2, 0 ≤ y ≤ y2}. The initial data, external
forcing, and boundary forcing functions are assumed to have compact support in Ω̄. We
add super-grid layers of thickness ` outside all sides of Ω̄, except y = 0. We choose the
coordinate system such that x1 − ` = 0, x2 + ` = xmax, y2 + ` = ymax, and introduce
the coordinate transformation (1). Because of the physical boundary condition (41) along
y = 0, we use a stretching function in the η-direction that satisfies φ(y) = 1 for 0 ≤ η ≤ y2.
Similar to the one-dimensional case, φ(x) = 1 for x1 ≤ ξ ≤ x2. See Figure 2 for a layout
of this configuration.

After transforming the spatial derivatives in (39) and adding an artificial dissipation
of order 2p, we get the elastic wave equation with super-grid layers,

ρutt = φ(x)
∂

∂ξ

(
φ(x)(2µ+ λ)uξ + φ(y)λvη

)
+ φ(y)

∂

∂η

(
φ(x)µvξ + φ(y)µuη

)
−

ε(−1)pφ(x)
∂p

∂ξp

(
σ(x)ρ

∂put
∂ξp

)
− ε(−1)pφ(y)

∂p

∂ηp

(
σ(y)ρ

∂put
∂ηp

)
+ f (x), (42)

14



ρvtt = φ(x)
∂

∂ξ

(
φ(x)µvξ + φ(y)µuη

)
+ φ(y)

∂

∂η

(
φ(x)λuξ + φ(y)(2µ+ λ)vη

)
−

ε(−1)pφ(x)
∂p

∂ξp

(
σ(x)ρ

∂pvt
∂ξp

)
− ε(−1)pφ(y)

∂p

∂ηp

(
σ(y)ρ

∂pvt
∂ηp

)
+ f (y). (43)

Similar to the one-dimensional case, the coefficients in the damping terms are zero inside
the domain of interest, i.e., σ(x)(ξ) = 0 for x1 ≤ ξ ≤ x2 and σ(y)(η) = 0 for 0 ≤ η ≤ y2.
The damping in the ξ-direction is therefore only added in the layers 0 ≤ ξ ≤ ` = x1 and
x2 ≤ ξ ≤ x2 + ` = xmax. In the η-direction, the damping is only added in the layer
y2 ≤ η ≤ y2 + ` = ymax. In particular, note that there is no damping in the η-direction
near the physical boundary.

The normal stress boundary conditions (41) are also mapped to computational coor-
dinates using (1). Because φ(y) = 1 for y = η = 0, we get

µ
(
φ(x)vξ + uη

)
= τ (xy),

(2µ+ λ)vη + λφ(x)uξ = τ (yy),
0 ≤ ξ ≤ xmax, η = 0, t ≥ 0. (44)

We proceed by deriving an energy estimate for the solution of (42), (43), (44). Because
φ(x) ≥ εL > 0 and φ(y) ≥ εL > 0, we define a weighted scalar product and norm for real-
valued functions u and v by

(u, v)2φ =

∫ ymax

0

∫ xmax

0

u(ξ, η) v(ξ, η)

φ(x)(ξ)φ(y)(η)
dξdη, ‖u‖22φ = (u, u)2φ.

Consider the case without external and boundary forcing, i.e., f (x) = 0, f (y) = 0, τ (xy) = 0
and τ (yy) = 0. The energy estimate is derived by multiplying (42) by ut/(φ

(x)φ(y)), and
(43) by vt/(φ

(x)φ(y)). We then add the results together and integrate over the computa-
tional domain. After integration by parts we obtain

d

dt
E2(t) = −ε

(
φ(x)

∂put
∂ξp

, σ(x)ρ
∂put
∂ξp

)
2φ

− ε
(
φ(x)

∂pvt
∂ξp

, σ(x)ρ
∂pvt
∂ξp

)
2φ

−

ε

(
φ(y)

∂put
∂ηp

, σ(y)ρ
∂put
∂ηp

)
2φ

− ε
(
φ(y)

∂pvt
∂ηp

, σ(y)ρ
∂pvt
∂ηp

)
2φ

+BT2, (45)

where BT2 is the boundary term. In the stretched coordinates, the elastic energy satisfies

2E2(t) = (ut, ρut)2φ + (vt, ρvt)2φ +
(
φ(x)uξ + φ(y)vη, λ

(
φ(x)uξ + φ(y)vη

))
2φ

+(
φ(x)vξ + φ(y)uη, µ

(
φ(x)vξ + φ(y)uη

))
2φ

+

2
(
φ(x)uξ, µφ

(x)uξ

)
2φ

+ 2
(
φ(y)vη, µφ

(y)vη

)
2φ
. (46)

Remark 4. Similar to the one-dimensional case, the strength of the damping is deter-
mined by εφ(x)σ(x) in the ξ-direction and by εφ(y)σ(y) in the η-direction. The strength is
accumulated near corners where two super-grid layers meet.

The boundary term, BT2, in (45) can be evaluated in the same way as was done for
the one-dimensional case, in (7). Because τ (xy) = τ (yy) = 0 in boundary condition (44),
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all boundary terms from η = 0 cancel. The remaining boundary terms in BT2 become
zero if we enforce the boundary conditions

u = 0, uξ = 0, · · · , ∂p−1u

∂ξp−1
= 0, ξ = {0, xmax}, 0 ≤ η ≤ ymax, t ≥ 0, (47)

and

u = 0, uη = 0, · · · , ∂p−1u

∂ηp−1
= 0, 0 ≤ ξ ≤ xmax, η = ymax, t ≥ 0. (48)

The elastic energy E2(t) is a norm of u for all u that satisfy the homogeneous boundary
conditions (44), (47), and (48), because ρ > 0, λ > 0, µ > 0, φ(x) ≥ εL, and φ(y) ≥ εL,
where εL > 0.

Remark 5. Boundary conditions (47) and (48) remove the translational and rotational
rigid body invariants from u. These invariants would otherwise correspond to motions
with zero elastic energy and make E2(t) a semi-norm, see e.g. [17] for details.

We summarize the results of this section in the following lemma.

Lemma 4. Let u = (u, v) be a solution of the elastic wave equation with super-grid dis-
sipation (42), (43), subject to the boundary conditions (44), (47), (48). Let the order of
the super-grid dissipation be 2p, p ≥ 0. Furthermore, assume that the external and bound-
ary forcing functions are zero, i.e. f (x) = f (y) = 0 and τ (xy) = τ (yy) = 0. Furthermore,
assume that the material parameters and the stretching functions satisfy λ > 0, µ > 0,
ρ > 0, φ(x) ≥ εL, and φ(y) ≥ εL, where εL > 0. Then, the elastic energy E2(t), defined by
(46), is a norm of the solution and satisfies (45) with zero boundary term, BT2 = 0. If
the coefficient of the dissipation satisfies ε ≥ 0, the right hand side of (45) is non-positive.
Therefore, u satisfies the energy estimate E2(t) ≤ E2(0), for t > 0. Assuming that the
solution exists, we conclude that the problem is well-posed.

3.1 Discretizing the elastic wave equation with super-grid layers

We discretize (42), (43) on the grid ξi = (i−1)h, ηj = (j−1)h, where i and j are integers.
The domain sizes and the uniform grid spacing h > 0 are defined such that xNx = xmax
and yNy = ymax. Time is discretized on a grid with constant time step, ∆t > 0. We denote
the approximation of the displacement at grid point (xi, yj) and time level tn = n∆t by
uni,j = (uni,j , v

n
i,j)

T .
The first two terms on the right hand sides of (42) and (43) are discretized according

to

L
(u)
h u = φ(x)G(x)

(
φ(x)(2µ+ λ)

)
u+ φ(x)D(x)(φ(y)λD(y)v)+

φ(y)D(y)(φ(x)µD(x)v) + φ(y)G(y)
(
φ(y)µ

)
u, (49)

and

L
(v)
h u = φ(x)G(x)

(
φ(x)µ

)
v + φ(x)D(x)(φ(y)µD(y)u)+

φ(y)D(y)(φ(x)λD(x)u) + φ(y)G(y)
(
φ(y)(2µ+ λ)

)
v, (50)
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respectively. Here, the grid indices on the grid functions are suppressed to simplify the
notation. On vector notation, the discretization is denoted

Lhu
n
i,j =

(
L
(u)
h uni,j

L
(v)
h uni,j

)
.

The finite difference operators G(x) and D(x) in the above formulas act along the first index
(ξ-direction). The fourth order accurate operator G(x)(µ)wi,j approximates (µwξ)ξ(ξi, ηj).
Besides operating on a two-dimensional grid function, it is the same as the one-dimensional
operator G in (10). The difference operator D(x)wi,j is a fourth order accurate centered
approximation of wξ(ξi, ηj). It can be written

D(x)wi,j := D0xwi,j −
h2

6
D0xD+xD−xwi,j =

1

12h
(−wi+2,j + 8wi+1,j − 8wi−1,j + wi−2,j) , D0x =

1

2
(D+x +D−x). (51)

Note that the difference operators G(x) and D(x) are not boundary modified and do not
satisfy standard SBP properties. As in the one-dimensional case, two ghost points are
needed outside the super-grid boundaries ξ = 0 and ξ = xmax.

The fourth order accurate finite difference operators G(y)(φ(y)µ)u and D(y)u approx-
imate (φ(y)µuη)η and uη, respectively. These are one-dimensional operators acting along
the second index (η-direction), but with SBP-GP boundary modifications at the η = 0
boundary, as described in [17]. For this reason, one ghost point is needed outside the phys-
ical boundary η = 0, and two ghost points are needed outside the super-grid boundary
η = ymax, where there is no boundary modification.

The artificial dissipation operators in (42) and (43) are discretized in the same way

as in the one-dimensional case. The dissipation of order 2p is denoted by Q
(x)
2p in the

ξ-direction and Q
(y)
2p in the η-direction. On vector form, the two-dimensional dissipation

becomes

Q2pu =

(
φ(x)Q

(x)
2p (σ(x)ρ)u+ φ(y)Q

(y)
2p (σ(y)ρ)u

φ(x)Q
(x)
2p (σ(x)ρ)v + φ(y)Q

(y)
2p (σ(y)ρ)v

)
. (52)

The dissipation requires p ghost points outside each super-grid boundary. Note that the
dissipation in the y-direction does not need any ghostpoints outside η = 0, because the
dissipation coefficient is zero near this boundary, i.e. σ(y) = 0.

The normal stress boundary conditions (44) are discretized by the fourth order accurate
formulas

µi,1

(
B(y)ui,1 + φ

(x)
i D(x)vi,1

)
= τ

(xy)
i , (53)

(2µ+ λ)i,1B
(y)vi,1 + λi,1φ

(x)
i D(x)ui,1 = τ

(yy)
i , (54)

for 1 ≤ i ≤ Nx. The boundary operator B(y)vi,1 is derived in [17]. It is a fourth order
accurate approximation of vy(xi, y1) of the form

∑4
l=0 clvi,l, where c0 6= 0. Therefore, (53)

and (54) can be solved for the ghost point values ui,0 and vi,0.
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We define the following boundary operators for two-dimensional grid functions,

Bsg1(u) := (u1−p̃,j , . . . ,u0,j ,uNx+1,j , . . . ,uNx+p̃,j)
T , 1− p̃ ≤ j ≤ Ny + p̃, (55)

Bsg2(u) :=
(
ui,Ny+1, . . . ,ui,Ny+p̃

)T
, 1− p̃ ≤ i ≤ Nx + p̃. (56)

As in the one-dimensional case, p̃ = max(2, p). The boundary conditions (47) and (48)
are discretized by

Bsg1(u) = (0, . . . , 0)T , Bsg2(u) = (0, . . . , 0)T . (57)

Using the above notation and the same time discretization as in Section 2.1, we can
write the finite difference approximation of the elastic wave equation with super-grid layers
on vector form,

ρ
un+1 − 2un + un−1

∆2
t

= Lhu
n + fn +

∆2
t

12
(Lhü

n + fntt)− ε(−1)pQ2p

(
uni,j − un−1i,j

∆t

)
, (58)

where un = (un, vn)T is subject to the normal stress boundary conditions (53), (54) as
well as the Dirichlet conditions Bsg1(u

n) = 0 and Bsg2(u
n) = 0. In (58), the acceleration

is defined by
üni,j =

(
Lhu

n
i,j + fni,j

)
/ρi,j , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (59)

which is subject to the Dirichlet conditions Bsg1(ü
n) = 0 and Bsg2(ü

n) = 0. It is also
subject to the normal stress conditions (53), (54), where the boundary forcing functions
(τ (xy), τ (yy)) are replaced by their second time derivatives.

3.2 Energy estimate

In our previous work for second and fourth order accurate methods, e.g., [13, 17], the
discrete energy estimate is derived based on the fundamental property

(w,Lhu)hw = −Sh(w,u) + Th(w,u). (60)

Here, (u,v)hw is a weighted scalar product and the bilinear form Sh(w,u) is symmetric
and positive semi-definite. The term Th(w,u) is also bilinear and consists of contributions
from the boundary. In particular, Th(w,u) = 0 when w satisfies homogeneous Dirichlet
conditions, or u satisfies free surface conditions, see [13, 17] for details.

Our previous estimates hold when the difference operators in Lhu are SBP modified
at all boundaries of the domain, and when the scalar product is correspondingly weighted
near all boundaries. We proceed by proving that the fundamental relation (60) also holds
without SBP modifications near the super-grid boundaries. Define the weighted scalar
product for real-valued scalar grid functions ui,j and vi,j by

(u, v)hw = h2
Ny∑
j=1

Nx∑
i=1

ωjui,jvi,j .

The corresponding scalar product for real valued vector grid functions ui,j and vi,j , is

(u,v)hw =
(
u(x), v(x)

)
hw

+
(
u(y), v(y)

)
hw
, u =

(
u(x)

u(y)

)
, v =

(
v(x)

v(y)

)
.
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Because the difference operators are SBP modified only at the boundary η = 0, the weight
in the scalar product, ωj , only depends on j. Furthermore, it is only different from unity
for 1 ≤ j ≤ 4.

To handle the relation between cross-terms and second derivatives, we need to show
that D(x)u is anti-symmetric.

Lemma 5. Let ui,j and vi,j be real-valued grid functions satisfying the boundary conditions
Bsg1(u) = 0 and Bsg1(v) = 0. Let D(x) denote the finite difference operator defined by
(51). Then, (

v,D(x)u
)
hw

= −
(
D(x)v, u

)
hw
.

Proof. See Appendix A.4.

To prove an energy estimate for the two-dimensional spatial discretization (58) together
with boundary conditions (53), (54), and (57), we proceed as follows. We first apply
Lemmas 1, 2, and 5, on each operator in the x-direction. For the operators in the y-
direction, Lemmas 1, 2, and 5 are modified by the summation by parts boundary terms
at η = 0, and become

(
v,G(y)(µ)u

)
hw

= −K(y)
0 (v, u)− h

Nx∑
i=1

µi,1vi,1B
(y)ui,1, (61)

(
v,D(y)u

)
hw

= −
(
D(y)v, u

)
hw
− h

Nx∑
i=1

ui,1vi,1, (62)(
v,Q

(y)
h u

)
hw

= C
(y)
0 (v, u). (63)

Here, the function K
(y)
0 (v, u) contains a sum of one-dimensional functions K0(v, u), which

is defined in Lemma 1. Similarly, the function C
(y)
0 (v, u) contains a sum of one-dimensional

functions C0(v, u), which is defined in Lemma 2. The super-grid dissipation operator Q
(y)
h

gives no contributions to the boundary terms at η = 0, because σ(y) is zero there.
Corresponding to lemmas 1 and 2 in the one-dimensional case, the essential properties

of the two-dimensional spatial discretization are specified in the following theorem.

Theorem 2. Let ui,j and wi,j be grid functions that satisfy the boundary conditions (53),
(54), and (57). The fourth order spatial operators (49), (50) then satisfy(

w,
1

φ(x)φ(y)
Lhu

)
hw

= −Sh(w,u), (64)

where Sh is bilinear, symmetric, and positive definite. Furthermore, the dissipation oper-
ator (52) satisfies (

w,
1

φ(x)φ(y)
Q2pu

)
hw

= Ch(w,u),

where Ch is bilinear, symmetric, and positive semi-definite.

Proof. See Appendix A.5.
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The discretization of the elastic wave equation with super-grid layers, (58), can be
written in matrix form as (24), with symmetric positive (semi-)definite matricesK and C2p.
Similar to the one-dimensional case, these matrices are defined through Sh(w,u) = wTKu
and Ch(w,u) = wTC2pu. Furthermore, in the two-dimensional case, the matrix Φ is still
diagonal, with elements φ(x)φ(y). For example,

Lhu = φ(x)φ(y)
(

1

φ(x)φ(y)
Lhu

)
= −φ(x)φ(y)Ku = −ΦKu.

The remaining terms in (58) can be rewritten similarly, allowing the finite difference scheme
for the elastic wave equation to be cast in the same matrix formulation as the scalar wave
equation, i.e., (24). Theorem 1 therefore applies also to (58), and we obtain our main
result.

Theorem 3. The finite difference scheme (58) with zero forcing fn = 0 and homogeneous
boundary conditions (53), (54), and (57), has a non-increasing discrete energy

en+1/2 ≤ en−1/2 ≤ . . . ≤ e1/2.

The discrete energy, corresponding to (26), is a norm of the solution when the time step
satisfies the inequalities corresponding to (27) and (28). Therefore, the scheme (58) is
stable.

3.3 Time step restriction in several space dimensions

Similar to the one-dimensional wave equation, a von Neumann analysis can be used to
estimate the stability limit of the time step for the two-dimensional elastic wave equation.
Here we will only study the influence of the super-grid dissipation in the fully discretized
elastic wave equation and therefore take L = 0 in (58). After assuming zero forcing, con-
stant stretching and dissipation coefficients as well as material properties, the dissipative
terms in (58) become

un+1 − 2un + un−1

∆2
t

= −ε(−1)p
[
φ
(x)
0 σ

(x)
0 (Dξ

+D
ξ
−)p + φ

(y)
0 σ

(y)
0 (Dη

+D
η
−)p
](un − un−1

∆t

)
.

To perform the von Neumann analysis, we assume that the solution is 2π-periodic in ξ and
η, and expand the solution in a Fourier series. After some algebra, the necessary condition
for stability becomes

0 ≤ γ2p
(
φ
(x)
0 σ

(x)
0 + φ

(y)
0 σ

(y)
0

)
≤ 2

4p
,

where γ2p is the scaled dissipation coefficient defined by (35). On sides away from corners,
either σ(x) = 0 or σ(y) = 0. However, both σ(x) and σ(y) are positive in the corner regions,
where two super-grid layers meet.

To avoid having to significantly reduce γ2p compared to the one-dimensional case,
it is necessary to reduce σ(x) and σ(y) near the corners. A simple solution is provided
by introducing a linear taper function. For example, in the corner region 0 ≤ ξ ≤ x1,
0 ≤ η ≤ y1, we define

τ(x) =


α, x < 0,

α+ (1− α)x/`, 0 ≤ x ≤ `,
1, x > `.
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We take α = 1/3 and define the two-dimensional damping functions by

σ(x)(ξ, η) = τ(η)σ(ξ), σ(y)(ξ, η) = τ(ξ)σ(η),

where σ(x) is the one-dimensional damping function (6). Using this construction, the
strength of the damping is determined by

I2(ξ, η) := φ(x)σ(x) + φ(y)σ(y) = τ(η)ψ(ξ) + τ(ξ)ψ(η),

where ψ(x) is the auxiliary function (5). This construction satisfies max I2 = 1. Away
from the corner, the strength of the damping is the same as in the one-dimensional case
because ψ(x) = 0 and τ(x) = 1 for x ≥ `. Therefore, I2(ξ, η) = ψ(η) for ξ ≥ ` and
I(ξ, η) = ψ(ξ) for η ≥ `. At the corner, τ(0) = 1/3 and ψ(0) = 1, giving I2(0, 0) = 2/3.
The function I2(ξ, η) has a local maxima along the diagonal ξ = η ≈ 0.31`, where I2 ≈
0.983. The tapering approach is straight forward to generalize to the other corners of the
computational domain.

In three dimensions, the strength of the damping equals I3 := φ(x)σ(x) + φ(y)σ(y) +
φ(z)σ(z). We generalize the tapering approach by defining σ(x)(ξ, η, ζ) = τ(η)τ(ζ)σ(ξ),
etc. This construction also satisfies max I3 = 1. Note that the two-dimensional strength
is recovered along edges of the three-dimensional domain (where two super-grid layers
meet), because I3(ξ, η, ζ) = I2(ξ, η) for ζ ≥ `, etc. In corners where three supergrid
layers meet, the strength of the damping has a local maxima along the space-diagonal
ξ = η = ζ ≈ 0.37` where I3 ≈ 0.823.

The tapering approach is of significant practical importance in three-dimensional cal-
culations, where up to three super-grid layers can meet at corners. This is because the
tapering keeps the maximum strength of the super-grid damping approximately the same
along sides, edges, and corners of the computational domain. Let γ2p be the damping co-
efficient that makes the time stepping stable in the case with super-grid damping in only
one direction. With the tapering approach, this value will also work when three super-grid
layers meet at a corner. Without the tapering approach, the time stepping would become
unstable unless the damping coefficient is reduced to approximately γ2p/3. Because the
maximum strength of the damping is reduced by a factor of three along the sides of the
domain (where only one super-grid damping term is active), the layers would need to be
approximately three times thicker to damp out the solution to the same level. Since the
super-grid layers are added outside the domain of interest, tripling their thickness would
significantly increase the total number of grid points in a three-dimensional case, and make
the calculation much more expensive.

4 Numerical experiments

All simulations reported here were performed with the open source code SW4, version
1.0 [15], which solves the three-dimensional elastic wave equation on parallel computers.
This code implements the three-dimensional version of the numerical methods described
in the previous sections, which satisfy corresponding stability and accuracy results. In all
numerical experiments, the order of the super-grid dissipation operator will be either 4
or 6, and the threshold value for the super-grid stretching functions is set to εL = 10−4.
All calculations use a box-shaped computational domain (x, y, z) ∈ [0, xmax]× [0, ymax]×
[0, zmax]. A free surface boundary condition is imposed along z = 0 and super-grid layers
are included on all other sides of the domain.
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4.1 Lamb’s problem

Lamb [8] derived an analytic solution of the elastic wave equation in a homogeneous half-
space, subject to an impulsive vertical point forcing applied on the free surface boundary.
Many generalizations have been made to Lamb’s original derivation, see for example [11]
or [5]. Here we focus on the case with λ = µ (Poisson ratio 1/4) where the evaluation of
the analytic solution is somewhat simplified.

We shall solve Lamb’s problem numerically and take the domain of interest to be
` ≤ x ≤ 8 + `, ` ≤ y ≤ 8 + `, 0 ≤ z ≤ 4 + `. The forcing is given by the singular point force

f(x, t) =


0

0

g(t)δ(x− x0)

 ,

where δ(x−x0) is the Dirac distribution centered at x0 = (4 + `, 4 + `, 0). The point force
is discretized in space by using the technique described in [14]. The time function satisfies

g(t) =

{
16384 t7(1− t)7, 0 < t < 1,

0, otherwise.
(65)

The source time function g(t) is six times continuously differentiable, symmetric around
t = 0.5, where g(0.5) = 1. The smoothness in time of the point forcing translates to
smoothness in space of the solution after the point force has stopped acting, i.e., for times
t > 1. Super-grid layers of width ` are added to all sides of the domain of interest, except
along z = 0, where homogeneous free surface conditions corresponding to (53) and (54)
are imposed. We choose the units such that the homogeneous elastic material has the
properties µ = λ = ρ = 1. The computational domain is taken to be 0 ≤ x ≤ 8 + 2` =:
xmax, 0 ≤ y ≤ 8 + 2` =: ymax, 0 ≤ z ≤ 4 + ` =: zmax.

Figure 3 shows the numerical solution at three different times when the super-grid layer
has thickness ` = 2, the grid size is h = 0.02, and the fourth order damping coefficient
is γ4 = 0.02. Here the magnitude of the displacement,

√
u2 + v2 + w2, is plotted. The

top left and right subfigures show a strong Rayleigh surface wave, a shear wave, and the
remnants of a weak compressional wave. In this material, the shear wave moves outwards
with phase velocity cs = 1 and the compressional wave has phase velocity cp =

√
3. For

a material with µ = λ = 1 it can be shown that the Rayleigh surface wave propagates
with phase velocity cr ≈ 0.92. Because the wave speed in each direction of the super-grid
layers is proportional to the value of the corresponding stretching function, the solution
slows down and becomes compressed inside the super-grid layers. Also note that the wave
fronts tend towards a square shape as time progresseses. We remark that no artificially
reflected waves are visible within the domain of interest, here outlined with a dashed line.

Mooney [11] gives explicit expressions for the analytical solution of Lamb’s problem on
the surface z = 0 in terms of a Green’s function, G(t). The z-component of the solution
at a point on the surface satisfies

w(x, y, 0, t) =
K

r

∫ t

0
g′(t− τ)G

(τ
r

)
dτ, (66)
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Figure 3: Magnitude of the displacement for Lamb’s problem at times 5, 7, and 9 (top to
bottom) in the z = 0 plane (left) and the x = 6 plane (right). The super-grid layers are
outlined by a dashed line and have thickness ` = 2. The contour levels are the same in all
plots and are spaced between 0.01 (dark blue) and 0.26 (red) with step size 0.01.
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where r =
√
x2 + y2, and

G(ξ) =


0, ξ < 1/

√
3,

c1 + c2/
√
γ2 − ξ2 + c3/

√
ξ2 − b2 + c4/

√
ξ2 − 1/4, 1/

√
3 < ξ < 1,

c5 + c6/
√
γ2 − ξ2, 1 < ξ < γ,

c7, γ < ξ.

(67)

The values of the constants K, ci, b, and γ are given in [11], with b ≈ 0.563 and γ ≈ 1.0877.
Hence all integrands are non-singular, except in the third case of (67), which has an
integrable singularity at ξ = γ. When g is given by (65), we obtain the exact solution as
a sum of terms that either are integrals of polynomials, or have the form∫

P (ξ)√
ξ2 − a2

dξ. (68)

where P (ξ) is a polynomial in ξ. Analytical expressions for integrals of the form (68) can be
found, but their numerical evaluation is very sensitive to round-off errors, due to the high
polynomial order of P . These analytical formulas are therefore inadequate for numerically
calculating the exact solution. Instead, we numerically evaluate the convolution integral
(66) using the Quadpack library from the Netlib repository [12]. This approach turns
out to be much better conditioned, and permits us to evaluate the formula (66) to within
approximately 12 decimal places.

Because the analytical solution is only available along the surface (z = 0), we study
the accuracy of the numerical solution along the surface of the domain of interest, i.e., for
z = 0, inside the super-grid layers: ` ≤ x ≤ xmax − `, ` ≤ y ≤ ymax − `.

As can be seen in Figure 3, the solution is dominated by shear and surface waves. The
distance between the point force and the closest super-grid layer equals 4, so the shear
waves start arriving at the super-grid layer at time t = 4. They leave the surface of the
domain of interest at time t = 1 + 4

√
2 ≈ 6.65. The slowest wave in the solution is the

surface wave, propagating at phase velocity cr ≈ 0.92. The surface waves therefore leave
the domain of interest around t ≈ 1+4

√
2/0.92 ≈ 7.15. After that time, the exact solution

is zero along the surface of the domain of interest.
Figure 4 shows the L2 norm of the error in the w-component of the solution, as function

of time. The norm is evaluated over the surface of the domain of interest. Note that the
point force makes the exact solution unbounded at x = x0 for 0 < t < 1, making the
norm of the error undefined. A few grid points near x0 are therefore excluded from the
norm calculation. The errors corresponding to grid sizes h = 0.04 (blue), h = 0.02 (red),
and h = 0.01 (black) are shown in Figure 4. Three different regimes of the error can be
distinguished. First, for 0 < t < 1, the point force is active and the numerical solution has
a large error near x0, where the exact solution is unbounded. No reduction of the norm of
the error is obtained as the grid is refined. Then follows a time interval where the error first
increases and then decreses, i.e., 1 ≤ t ≤ 7.15. Here the forcing is zero and the solution
error is dominated by propagation errors. Note that the L2-norm of the error is reduced
by approximately a factor of 16 each time the grid size is halved, indicating a fourth order
convergence rate. The reason the error decays between t ≈ 5 and t ≈ 7.15 is because the
shear and surface waves are leaving the domain of interest. Artificial reflections from the
super-grid layers become noticeable around t ≈ 7.5 and we take the third interval to be
t > 7.5. The simulations are run to time 30.
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Figure 4: L2 error in the vertical component of Lamb’s problem with sixth order artificial
dissipation for grid sizes h = 0.04 (blue), h = 0.02 (red), and h = 0.01 (black). The
width of the super-grid layer is ` = 2. The dashed vertical lines indicate times t = 1 and
t = 7.15. The dashed horizontal lines indicate the max errors in time for t > 7.5.

To investigate the amount of artificial reflections from the super-grid layers, we study
the maximum value of the L2 errors for times 7.5 < t ≤ 30, see Table 1. Here the width
of the layer, ` = NSGh, is varied as well as the order of the artificial dissipation. The
coefficients for the fourth and six order dissipations are γ4 = 0.02 and γ6 = 0.005, except
for the first entry (NSG = 13, h = 0.04), where those values lead to numerical instabilities.
In this case, stability was regained by reducing the coefficients to γ4 = 0.01 and γ6 = 0.002,
respectively.

The amount of artificial reflections depends strongly on the width of the super-grid
layer, `. On the coarsest grid (h = 0.04), the fourth order dissipation gives slightly smaller
errors than the sixth order dissipation for all widths. However, the sixth order dissipation
shows superior performance as the grid is refined. Reflected waves propagate from the
layer back into the domain of interest. Because the fourth order dissipation adds a third
order perturbation to the elastic wave equation, we can only expect the artificial reflections
to decay as O(h3) when the fourth order dissipation is used. Based on the same argument,
the sixth order dissipation should result in a fifth order perturbation of the elastic wave
equation. Because the interior scheme is fourth order accurate, the overall convergence
rate should be O(h4). Except for the thinnest super-grid layer, the results in Table 1
indicate almost third order convergence for the fourth order dissipation and better than
fourth order convergence for the sixth order dissipation.

It is also instructive to compare the sizes of the propagation errors with the reflection
errors. In our setup, the propagation error can be quantified as the max value of the
L2 norm of the error during the time interval 1 ≤ t ≤ 7.5. Evaluating the errors in the

25



4th order diss. 6th order diss.

Width NSG h max error ratio max error ratio

0.52 13 0.04 1.31e-1 – 1.50e-1 –

0.5 25 0.02 3.33-2 3.93 2.08e-2 7.21

0.5 50 0.01 8.51e-3 3.91 2.04e-3 10.20

1 25 0.04 1.91e-2 – 2.33e-2 –

1 50 0.02 2.73e-3 6.98 8.89e-4 26.14

1 100 0.01 4.88e-4 5.60 4.56e-5 19.48

2 50 0.04 1.13e-3 – 1.97e-3 –

2 100 0.02 1.33e-4 8.49 1.16e-5 170.3

2 200 0.01 1.85e-5 7.17 5.09e-7 22.81

Table 1: The maximum value of the L2-norm of the error for times 7.5 < t ≤ 30.

numerical solution (here denoted by wh) gives

max
1≤t≤7.5

‖w(·, ·, 0, t)− wh(·, ·, 0, t)‖2 ≈


2.95 · 10−2, h = 0.04,

2.47 · 10−3, h = 0.02,

1.54 · 10−4, h = 0.01.

As a minimum requirement, we want the reflection errors from the super-grid layers to be
smaller than the propagation errors. While this criteria is satisfied for ` = 1 and ` = 2, it
is not satisfied for the thinnest super-grid layer (` = 0.5). Note that the dominant wave
length of the solution is approximately one. Our conjecture is that the super-grid layers
need to be at least as wide as this wave length.

It is also interesting to study what happens if a fixed number of grid points are used
in the super-grid layer. This means that the width of the layer ` becomes smaller as the
grid is refined. In Table 1, 50 grid points are used in the layer on line 7 (h = 0.04),
line 5 (h = 0.02) and line 3 (h = 0.01). When the fourth order dissipation is used, the
error grows monotonically as the grid size is decreased. The results for the sixth order
dissipation are only marginally better. Here the error is about the same for h = 0.04 and
h = 0.01, but smaller for h = 0.02. We conclude that keeping a fixed number of grid
points in the layer leads to a modeling error that does not diminish as the grid size tends
to zero.

4.2 A heterogeneous half-space problem with smooth material

To further test the reflection properties of the super-grid approach, we consider a regular-
ized layered material model, where cp, cs, and ρ depend on z. We let the compressional
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Figure 5: Compressional velocity (cp) as function of depth (z) in the vertically layered
material.

wave speed vary between c
(1)
p = 4000 and c

(2)
p = 6000,

cp(z) = c(1)p +
c
(2)
p − c(1)p

2

(
1 + tanh

z − z1
Lz

)
+

c
(1)
p − c(2)p

2

(
1 + tanh

z − z2
Lz

)
+
c
(2)
p − c(1)p

2

(
1 + tanh

z − z3
Lz

)
.

The transition points are z1 = 1000, z2 = 3000, z3 = 5000, and the transition length scale
is Lz = 200. The resulting function is plotted in Figure 5. The shear speed and density

vary in a corresponding way with c
(1)
s = 2000, c

(2)
s = 3464, ρ(1) = 2600, and ρ(2) = 2700.

The solution is driven by a point moment tensor source,

f(x, t) = g(t)


0 mxy 0

mxy 0 0

0 0 0

∇δ(x− xs), (69)

located at xs = (xs, ys, zs) = (20, 20, 2) · 103, with amplitude mxy = 1018. The source
time function is the Gaussian,

g(t) =
1

2πσ
e(t−t0)

2/2σ2
, σ = 0.12, t0 = 0.72. (70)

We estimate the dominant frequency in the Gaussian by f0 = 1/(2πσ) ≈ 1.33 and the
highest significant frequency by fmax ≈ 2.5f0 ≈ 3.32, which corresponds to a shortest
shear wave length of min cs/fmax ≈ 2000/3.32 ≈ 603.2.
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We choose the computational domain to be (x, y, z) ∈ [0, 4·104]×[0, 4·104]×[0, 1.5·104].
Super-grid layers of width 5 · 103 are used on all sides, except at z = 0, where we impose
a free surface boundary condition. As a result, the domain of interest becomes 5 · 103 ≤
(x, y) ≤ 3.5 · 104, and 0 ≤ z ≤ 104. The simulations are run to time t = 20.

In Figure 6 we show snapshots of the magnitude of the numerical solution with grid
size h = 50 and sixth order dissipation with γ6 = 5 ·10−3. The solution is shown along the
free surface (z = 0) and in the vertical plane y = 2 · 104. Due to the vertical variation of
the material velocity, the solution has much more structure than the solution of Lamb’s
problem. The source is centered in the fast layer between z1 = 1000 and z2 = 3000 and
generates head waves that are transmitted into the slower layers above and below. As the
waves propagate further downwards, they speed up again as they enter the fast material
for z > 5000. Several sets of surface and interface waves can be identified in the solution.
We remark that no reflected waves are visible in the domain of interest after time t ≈ 15.5.

No analytical solution is available for this problem. Instead we assess the convergence
rate by comparing solutions on grids of three different grid sizes: h = 100, h = 50, and
h = 25. According to the above estimate of the shortest shear wave length, these grid
sizes correspond to approximately 6, 12, and 24 grid points per wave length.

We assume that the numerical solution, uh, is a pth order accurate approximation of
the solution of the continuous problem, u, and that the relation

uh ≈ u+ hpr, (71)

holds, where r is a function that can be bounded independently of the grid size, h. It
follows from (71) that u2h ≈ u+ 2phpr and u4h ≈ u+ 4phpr. Therefore,

‖u4h − uh‖
‖u2h − uh‖

≈ 4p − 1

2p − 1
= 2p + 1,

and we can estimate the convergence rate by p ≈ log2(‖u4h − uh‖/‖u2h − uh‖ − 1).
Because it is impractical to store the numerical solution at all points in space and time,

we will limit our investigation to study the convergence of the time-dependent solution at
fixed locations along the intersection between the free surface, z = 0, and the boundary
of the domain of interest, x = 3.5 · 104. For each grid size, we record the solution at seven
equally spaced locations between y1 = 5 · 103 and the symmetry line y7 = 2 · 104,

yk = 5 · 103 + (k − 1)2.5 · 103, k = 1, 2, . . . , 7.

For example, Figure 7 shows the Cartesian components of the solution as function of time,
at the location (x4, y4, z4) = (3.5, 1.25, 0) · 104. On the right side of Figure 7 we show
the difference between the solutions computed with grid sizes h = 50 and h = 25. Note
that the difference is significantly smaller than the solution itself, indicating that it is
well-resolved on the grid.

In Table 2 we report the L2 norm of the differences between the numerical solutions
at the seven locations. It is interesting to notice that the numerical solutions seem to
converge better near the corner of the domain of interest. For locations y1-y4 we observe
close to perfect fourth order rate of convergence. The rate for y5-y7 is slightly lower and
goes down to about 3.3 on the symmetry line y7 = 2 · 104.
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Figure 6: Magnitude of the displacement in the layered material at times 5.035, 10.07,
and 15.105 (top to bottom) in the z = 0 plane (left) and the y = 2 · 104 plane (right).
The dashed lines indicate the boundaries of the super-grid layers, which have thickness
` = 5 · 103. The contour levels are the same in all plots and are spaced between 0.05 (dark
blue) and 1.85 (red) with step size 0.05.
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Figure 7: Solution at (x4, y4, z4) = (3.5, 1.25, 0) · 104 as function of time, computed with
grid size h = 50 (left). Difference between the numerical solutions computed with grid size
h = 50 and h = 25 (right).

Location yk ‖u4h − uh‖2 ‖u2h − uh‖2 ratio p

1 0.5 · 104 4.567 · 10−3 2.640 · 10−4 17.302 4.03

2 0.75 · 104 3.767 · 10−3 2.188 · 10−4 17.213 4.02

3 1 · 104 3.903 · 10−3 2.269 · 10−4 17.197 4.01

4 1.25 · 104 4.284 · 10−3 2.538 · 10−4 16.882 3.99

5 1.5 · 104 3.267 · 10−3 2.096 · 10−4 15.580 3.87

6 1.75 · 104 2.643 · 10−3 2.212 · 10−4 11.950 3.45

7 2 · 104 2.679 · 10−3 2.456 · 10−4 10.906 3.31

Table 2: The L2-norm of the difference between the numerical solutions at the locations
(xk, yk, zk), where xk = 3.5 · 104 and zk = 0. Here, p = log2(ratio− 1).
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Estimating the convergence rate without access to an analytical solution requires the
solution to be sufficiently well resolved on all grids. From the snapshots in Figure 6
we observe that the surface waves are stronger along the symmetry lines than along the
diagonal. Since they have slightly shorter wave lengths than the shear waves, it is possible
that the surface waves are only marginally resolved on the coarsest grid. This may explain
the slightly slower convergence rates near y = 2 · 104. Nevertheless, we conclude that the
super-grid approach is robust and leads to very small artificial reflections, also when the
material model is heterogeneous.

5 Conclusions

We have developed a new a finite difference method to approximate the elastic wave
equation with super-grid layers. The method combines fourth order accurate summation
by parts (SBP) operators [17] with centered fourth order accurate finite difference formulas
in the interior of the domain. To make the implementation of the method more efficient
and greatly simplified in multi-dimensional domains, our main idea is to only use SBP
operators near the physical free surface boundary. The centered finite difference formulas
are used all the way up to the artificial super-grid boundaries, where the computational
domain is truncated. This approach is made possible by enforcing homogeneous Dirichlet
boundary conditions at several grid points outside the super-grid boundaries. Even though
the overall discretization does not satisfy the principle of SBP, we have proven by energy
estimates that the fully discrete approximation is stable.

One very desirable property of the super-grid method is that, with a wide enough layer,
the modeling error from truncating the domain can be made as small as, or smaller than,
the wave propagation errors from the interior scheme. This allows the total error in the
solution to converge with full order of accuracy as the grid size tends to zero. As shown
in the numerical experiments, fourth order accuracy can be achieved with a sixth order
artificial damping term, if the super-grid layer has a constant thickness, i.e., independent
of the grid size. This thickness can be considerably thinner than the trivial layer, which
would be as wide as the distance traveled by the fastest wave over the duration of the
entire simulation. However, while the modeling error is reduced by making the super-grid
layer thicker, it also increases the computational cost and storage requirements of the
simulation. There is therefore a trade-off between computational cost and accuracy of the
solution, which is tunable by only changing one parameter, i.e., the width of the super-grid
layers.

The super-grid approach can be generalized to curvilinear coordinates. This allows the
free surface condition to be imposed on a non-planar surface, which for example is very
desirable for modeling seismic wave propagation in the presence of realistic topography.
The curvilinear super-grid approach has been implemented as part of the open source code
SW4 [15].

The basic finite difference method itself could be generalized from fourth to higher
order accuracy. All the summation by parts operators, and the modified equation based
time stepping method, are available to at least sixth order of accuracy. The order of the
dissipation operator in the super-grid layer would also need to be increased to match a
higher order accurate interior scheme. This can be done in a straight forward way by noting
that the 2p order dissipation operator gives a 2p− 1 order truncation error in the super-
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grid layers. Since these errors can propagate into the domain of interest, it is necessary
to choose p such that 2p − 1 is larger than or equal to the expected convergence rate of
the interior difference scheme. For example, to obtain overall sixth order of accuracy, it
would be necessary to use an eight order artificial dissipation operator.

Additional extensions of the current work could include a more detailed analysis of
the modeling error from truncating the domain. In particular it would be desirable to
establish a mathematical proof of our numerical observation that the solution converges
with optimal rate, if the super-grid layer is sufficiently wide.

A Proofs of lemmas and theorems

A.1 Properties of G(µ)u

We simplify the notation by first analyzing the function K1(v, u) := (v,G(µ)u)h1. The fi-
nite difference operator G(µ)uj , defined by (10), can be written as a sum of three difference
operators

G(µ)uj = D(x1)
(
µjD

(x1)uj

)
+
h4

18
D+D−D+ (µ̃jD−D+D−uj)

− h6

144
(D+D−)2

(
µj (D+D−)2 uj

)
, (72)

where µ̃j = (µj + µj−1)/2. Here, D+ and D− denote the standard forward and back-
ward divided difference operators. The term D(x1)wj is a centered fourth order accurate
approximation of wξ(ξj). It can be written

D(x1)wj := D0wj −
h2

6
D0D+D−wj , D0 =

1

2
(D+ +D−). (73)

In the following we set N = Nx.
We want to analyze G(µ)uj for j = 1, 2, . . . , N . We first comment on the width of

the stencil. The terms D(x1)µjD
(x1)uj and (D+D)2µj(D+D−)2uj are both nine points

wide. But the sum of the two is only seven point wide, since the outermost points in the
stencils have weights of equal magnitude but opposite signs. Similarly, the sum of these
two nine-point stencils and the seven point stencil, D+D−D+(µ̃jD−D+D−uj), has zero
weights on the outermost terms, making the resulting stencil five points wide.

Since G(µ)uj is a five point formula, its values at the interior points 1 ≤ j ≤ N are
only influenced by uq for −1 ≤ q ≤ N + 2. We next treat the operators term by term.
For simplicity, we introduce some additional artificial ghost points. Note that this is not
strictly necessary, because G(µ)uj is a five point formula, but it simplifies the presentation.
The boundary condition Bsg(u) = 0 sets u−1 = u0 = 0 and uN+1 = uN+2 = 0. However,
we can impose boundary conditions at additional ghost points without changing G(µ)uj
for j = 1, 2, . . . , N . In particular, we choose to replace Bsg(u) = 0 and Bsg(v) = 0 by
imposing homogeneous Dirichlet conditions at four ghost points

u−3 = u−2 = u−1 = u0 = 0, v−3 = v−2 = v−1 = v0 = 0, (74)

uN+1 = uN+2 = uN+3 = uN+4 = 0, vN+1 = vN+2 = vN+3 = vN+4 = 0. (75)

It is convenient to analyze G(µ)uj by studying each term on the right hand side of
(72) independently. We focus on the properties of G(µ)uj near the left boundary, and
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we extend the grid functions to the semi-infinite domain j ≥ −3 subject to the boundary
conditions (74). We modify the scalar product to be

(u, v)h0 = h
∞∑
j=1

ujvj . (76)

In this scalar product, the basic forward, backward and centered divided difference oper-
ators satisfy the SBP parts identities

(v,D+w)h0 = − (D−v, w)h0 − w1v0,

(v,D−w)h0 = − (D+v, w)h0 − w0v1, (77)

(v,D0w)h0 = − (D0v, w)h0 −
1

2
(w0v1 + w1v0) .

Repeated use of these identities and boundary condition (74) lead to the relations(
v,D(x1)(µD(x1)u)

)
h0

= −
(
D(x1)v, µD(x1)u

)
h0
− J1, (78)

(v,D+D−D+ (µ̃D−D+D−u))h0 = − (D−D+D−v, µ̃D−D+D−u)h0 − J2, (79)(
v, (D+D−)2

(
µ (D+D−)2 u

))
h0

=
(

(D+D−)2 v, µ (D+D−)2 u
)
h0

+ J3. (80)

The boundary terms satisfy

J1 =
1

144h
(µ0(u2 − 8u1)(v2 − 8v1) + µ−1u1v1) ,

J2 =
1

h5
(
µ−1/2u1v1

)
,

J3 =
1

h7
(µ−1u1v1 + µ0(u2 − 4u1)(v2 − 4v1)) .

By collecting terms,

(v,G(µ)u)h0 = −
(
D(x1)v, µD(x1)u

)
h0
− h4

18
(D−D+D−v, µ̃D−D+D−u)h0 −

h6

144

(
(D+D−)2 v, µ (D+D−)2 u

)
h0
− J, (81)

where the boundary term satisfies J = J1 + h4J2/18 + h6J3/144. All terms in (81) are
symmetric in u and v. Since µ > 0, all terms are negative or zero if u = v. The
contributions from the right boundary can be analyzed in the same way. Collecting all
contributions to (v,G(µ)u)h1 shows that the function K1 is symmetric, i.e.,

K1(v, u) := − (v,G(µ)u)h1 , K1(v, u) = K1(u, v).

From the above construction, it is clear that K1(u, u) ≥ 0. It remains to show that K1(u, u)
is positive definite, i.e., K1(u, u) = 0 if and only if u = 0. Obviously, K1(u, u) = 0 if u = 0.
Because K1(u, u) is a sum of non-negative terms, it can only be zero if each term is zero.
We choose to study the term

T1(u) := (D−D+D−u, µ̃D−D+D−u)h1 = h

N∑
j=1

µj−1/2 (D−D+D−uj)
2 .
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The difference equation D−D+D−uj = 0 has the general solution uj = α+ jβ+ j2γ where
α, β, and γ are constants. Because T1(u) only depends on the ghost point values u−1, u0,
and uN+1, the boundary condition Bsg(u) = 0 gives the linear system

α− β + γ = 0, (82)

α = 0, (83)

α+ (N + 1)β + (N + 1)2γ = 0. (84)

It is straight forward to see that this system only has the trivial solution α = β = γ = 0.
We conclude that T1(u) = 0 if and only if u = 0. Hence, K1(u, u) = 0 if and only if u = 0.

Since φj = φ(ξj) ≥ εL > 0, the same arguments apply to the function K0(v, u) =
(v,G(φµ)u)h1. This proves the lemma.

A.2 The artificial dissipation operator Q2p

We apply the same technique as in section A.1 and start by studying the boundary terms
due to the left boundary, using the scalar product (76). For a fourth order dissipation,
p = 2, and we define wj = σjρjD+D−uj . We have,

(v,Q4u)h0 = (v,D+D−w)h0.

Combining the first two summation by parts rules in (77) gives

(v,D+D−w)h0 = (D+D−v, w)h0 − v0D−w1 + w0D−v1.

Because v satisfies the boundary condition Bsg(v) = 0, we have v0 = 0. Therefore, the
first boundary term is zero. For the second boundary term we have D−v1 = v1/h. It can
be further simplified because Bsg(u) = 0, so u−1 = u0 = 0. Therefore, w0 = σ0ρ0u1/h

2

and we obtain

(v,Q4u))h0 = (v,D+D−w)h0 = (D+D−v, σρD+D−u)h0 + v1u1
σ0ρ0
h3

.

All terms on the right hand side are symmetric in u and v. Furthermore, they are non-
negative when u = v. Hence, there is a function C0(u, v) that does not depend on the
ghost point values of u or v, such that

(v,Q4u))h0 = C0(v, u), C0(u, v) = C0(v, u), C0(u, u) ≥ 0.

The influence of the right boundary can be analyzed in the same way. The same approach
applies to all dissipation operators of order 2p, p ≥ 1. This proves the lemma.

A.3 One-dimensional energy estimate

Assuming F (t) = 0, we derive an energy estimate for (24) by forming the scalar product
between (ūn+1 − ūn−1)Φ−1 and (24) (note that Φ is non-singular because φj ≥ εL > 0).
For the left hand side, we get

1

∆2
t

(
ūn+1 − ūn−1,Φ−1M(ūn+1 − 2ūn + ūn−1)

)
h1

=

1

∆2
t

(
ūn+1 − ūn,Φ−1M(ūn+1 − ūn)

)
h1
− 1

∆2
t

(
ūn − ūn−1,Φ−1M(ūn − ūn−1)

)
h1
. (85)
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Because the matrices K, Φ, and M are symmetric, the first two terms on the right hand
side of (24) become(

ūn+1 − ūn−1,−Kūn +
∆2
t

12
KM−1ΦKūn

)
h1

=(
ūn+1,−Kūn +

∆2
t

12
KM−1ΦKūn

)
h1

−
(
ūn,−Kūn−1 +

∆2
t

12
KM−1ΦKūn−1

)
h1

, (86)

where we have used ΦM−1 = M−1Φ.
To analyze the dissipative term (last term on the right hand side of (24)), it is helpful

to first consider an expression of the type (x̄+ ȳ, Cȳ)h1, where C = C2p. We have

(x̄+ ȳ, Cȳ)h1 = (x̄+ ȳ, C(x̄+ ȳ))h1 − (x̄+ ȳ, Cx̄)h1.

Also, (x̄+ ȳ, Cȳ)h1 = (x̄, Cȳ)h1 + (ȳ, Cȳ)h1. Because C is symmetric,

(x̄+ ȳ, Cȳ)h1 =
1

2
(x̄+ ȳ, C(x̄+ ȳ))h1 −

1

2
(x̄+ ȳ, Cx̄)h1 +

1

2
(x̄, Cȳ)h1 +

1

2
(ȳ, Cȳ)h1 =

1

2
(x̄+ ȳ, C(x̄+ ȳ))h1 −

1

2
(x̄, Cx̄)h1 +

1

2
(ȳ, Cȳ)h1.

Now take x̄ = ūn+1 − ūn and ȳ = ūn − ūn−1. The expression for the dissipative term in
(23) becomes

(
ūn+1 − ūn−1, C2p

(
ūn − ūn−1

))
h1

=
1

2

(
ūn+1 − ūn−1, C2p

(
ūn+1 − ūn−1

))
h1

− 1

2

(
ūn+1 − ūn, C2p

(
ūn+1 − ūn

))
h1

+
1

2

(
ūn − ūn−1, C2p

(
ūn − ūn−1

))
h1
. (87)

By inspection of the three terms (85), (86), and (87), it is natural to define the discrete
energy according to (26). After re-arranging the terms of (85), (86), and (87), we arrive
at the energy estimate (30).

To analyze the properties of en+1/2, we re-write the terms of (26) that involve K.
Because K is symmetric,

(ūn+1,Kūn)h1 =
1

4
(ūn+1 + ūn,K(ūn+1 + ūn))h1 −

1

4
(ūn+1 − ūn,K(ūn+1 − ūn))h1.

The same procedure applies to the terms involving the matrix KM−1ΦK, which also is
symmetric because ΦM−1 = M−1Φ. The discrete energy en+1/2 can therefore be grouped
into two terms

en+1/2 =

(
ūn+1 − ūn,

(
1

∆2
t

Φ−1M − 1

4
K +

∆2
t

48
KM−1ΦK − ε

2∆t
C2p

)
(ūn+1 − ūn)

)
h1

+

(
ūn+1 + ūn,

(
1

4
K − ∆2

t

48
KM−1ΦK

)
(ūn+1 + ūn)

)
h1

.

We have en+1/2 > 0 if both terms are positive. By taking w̄ = ūn+1 − ūn, we see that
the first term is positive if (27) is satisfied. Setting w̄ = ūn+1 + ūn shows that the second
term is positive if (28) is satisfied. This completes the proof.
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A.4 Anti-symmetry of D(x)

We first prove the corresponding lemma for the 1-D operator (73), where u and v are
1-D grid functions satisfying the boundary conditions Bsg(u) = 0 and Bsg(v) = 0. By
expanding the terms in the scalar product and rearranging them,

(
v,D(x1)u

)
h1

=
1

12

N∑
i=1

vi(ui−2 − 8ui−1 + 8ui+1 − ui+2)

=
1

12
[u−1v1 + u1v−1 + u0(−8v1 + v2) + v0(−8u1 + u2)] +

1

12

N∑
i=1

ui(−vi−2 + 8vi−1 − 8vi+1 + vi+2)+

1

12
[−uN+2vN − vN+2uN + uN+1(8vN − vN−1) + vN+1(8uN − uN−1)] . (88)

The boundary terms are equal to zero because Bsg(u) = 0 and Bsg(v) = 0 imply u−1 =
u0 = v−1 = v0 = 0 and uN+2 = uN+1 = vN+2 = vN+1 = 0. Hence, we obtain(

v,D(x1)u
)
h1

= −
(
D(x1)v, u

)
h1
.

Trivial generalizations extend the proof to two-dimensional grid functions.

A.5 Symmetry of the two-dimensional discretization

First, we need the following refinement of (61),

(
v,G(y)(µ)u

)
hw

= −
(
D(y)v, µD(y)u

)
hw
−
(
v, P (y)(µ)u

)
h
− h

Nx∑
i=1

µi,1vi,1B
(y)ui,1, (89)

which was proven in [17]. Here P (y)(µ) is an operator acting in the y-direction, which is
positive definite in the un-weighted scalar product (u, v)h,

(u, v)h = h2
Nx∑
i=1

Ny∑
j=1

ui,jvi,j .

For details, see [17]. The identity corresponding to (89) for the operator in the x-direction
does not have a boundary term. The proof is a trivial generalization of the result in
Appendix A.1.

To prove (64), we introduce the grid functions u = (u(x), u(y))T , w = (w(x), w(y))T ,
and write out the components of (64) as(

w,
1

φ(x)φ(y)
Lhu

)
hw

=

(
w(x),

1

φ(x)φ(y)
L
(u)
h u

)
hw

+

(
w(y),

1

φ(x)φ(y)
L
(v)
h u

)
hw

. (90)
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The first term on the right hand side is expanded as(
w(x),

1

φ(x)φ(y)
L
(u)
h u

)
hw

=(
w(x),

1

φ(y)
G(x)

(
φ(x)(2µ+ λ)

)
u(x)

)
hw

+
(
w(x), D(x)λD(y)u(y)

)
hw

+(
w(x), D(y)µD(x)u(y)

)
hw

+

(
w(x),

1

φ(x)
G(y)

(
φ(y)µ

)
u(x)

)
hw

, (91)

where we have used that φ(x) does not depend on ηj , and φ(y) does not depend on ξi. Next
the summation by parts identites are used on each term in (91). As shown in Lemmas 1,
2, and 5, there are no boundary terms from operators in the x-direction. The y-direction
formulas are given in equations (62), (63), and (89). The resulting expression is

(
w(x),

1

φ(x)φ(y)
L
(u)
h u

)
hw

= −

(
D(x)w(x),

φ(x)

φ(y)
(2µ+ λ)D(x)u(x)

)
hw

−(
w(x),

1

φ(y)
P (x)(φ(x)(2µ+ λ))u(x)

)
h

−
(
D(x)w(x), λD(y)u(y)

)
hw
−

(
D(y)w(x), µD(x)u(y)

)
hw
−

(
D(y)w(x),

φ(y)

φ(x)
µD(y)u(x)

)
hw

−

(
w(x),

1

φ(x)
P (y)(φ(y)µ)u(x)

)
h

− h
Nx∑
i=1

w
(x)
i,1

µi,1

φ
(x)
i

(
φ
(x)
i D(x)u

(y)
i,1 + φ

(y)
1 B(y)u

(x)
i,1

)
. (92)

By performing a similar expansion of the second term on the right hand side of (90),
adding together the results, and completing the squares, we arrive at the final expression(

w,
1

φ(x)φ(y)
Lhu

)
hw

= Eh + Ph + Th,

where

Eh = −
(
φ(x)D(x)w(x) + φ(y)D(y)w(y),

λ

φ(x)φ(y)
[φ(x)D(x)u(x) + φ(y)D(y)u(y)]

)
hw

−(
φ(y)D(y)w(x) + φ(x)D(x)w(y),

µ

φ(x)φ(y)
[φ(y)D(y)u(x) + φ(x)D(x)u(y)]

)
hw

−(
φ(x)D(x)w(x),

2µ

φ(x)φ(y)
[φ(x)D(x)u(x)]

)
hw

−
(
φ(y)D(y)w(y),

2µ

φ(x)φ(y)
[φ(y)D(y)u(y)]

)
hw

,

(93)

and

Ph = −
(
w(x),

1

φ(y)
P (x)(φ(x)(2µ+ λ))u(x)

)
h

−
(
w(x),

1

φ(x)
P (y)(φ(y)µ)u(x)

)
h

−(
w(y),

1

φ(y)
P (x)(φ(x)µ)u(y)

)
h

−
(
w(y),

1

φ(x)
P (y)(φ(y)(2µ+ λ))u(y)

)
h

. (94)
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The boundary terms are

Th = −h
Nx∑
i=1

w
(y)
i,1

1

φ
(x)
i

(
φ
(x)
i λi,1D

(x)u
(x)
i,1 + φ

(y)
1 (2µi,1 + λi,1)B

(y)u
(y)
i,1

)
−

h

Nx∑
i=1

w
(x)
i,1

µi,1

φ
(x)
i

(
φ
(x)
i D(x)u

(y)
i,1 + φ

(y)
1 B(y)u

(x)
i,1

)
, (95)

which vanish under the homogeneous boundary condition (53)–(54), because φ
(y)
1 = 1.

Hence, we have
Sh(w,u) = −Eh − Ph.

Here Eh is an approximation of the spatial terms in the elastic energy (46), and Ph is
symmetric in its arguments and positive definite.

The dissipation operator can similarly be expanded into the four terms(
w,

1

φ(x)φ(y)
Q2p(u)

)
hw

=(
w(x),

1

φ(y)
Q

(x)
2p (σ(x)ρ)u(x)

)
hw

+

(
w(x),

1

φ(x)
Q

(y)
2p (σ(y)ρ)u(x)

)
hw

+(
w(y),

1

φ(y)
Q

(x)
2p (σ(x)ρ)u(y)

)
hw

+

(
w(y),

1

φ(x)
Q

(y)
2p (σ(y)ρ)u(y)

)
hw

. (96)

By applying Lemma 2 to each term, we see that the expression is symmetric and positive
semi-definite. Note that although Lemma 2 holds in the unweighted norm, and (96) uses
the weighted norm, there is no difficulty because the y-direction operators in (96) are zero
near the boundary η = 0, where the norm is weighted.
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